Retours d'oraux : Analyse

  • Leçon choisie :

    243 : Convergence des séries entières, propriétés de la somme. Exemples et applications.

  • Autre leçon :

    217 : Sous-variétés de $R^n$. Exemples.

  • Développement choisi : (par le jury)

    Théorème taubérien fort

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Que exercices sur le plan.

    Une variable aléatoire discrète admettant des moments à tout ordre est-elle caractérisée par ses moments? (en rapport avec les séries génératrices)

    Calculer $\sum_{1}^{+ \infty} \frac{(-1)^n}{n}$

    Si f est DSE en 0 avec un RCV de 1, est-elle DSE en 1/2? Quel est le RCV?

    Connaissez-vous une autre démonstration du théorème de d'Alembert que celle à partir du théorème de Liouville? (avec des outils plus simples)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    261 : Fonction caractéristique et transformée de Laplace d'une variable aléatoire. Exemples et applications.

  • Autre leçon :

    223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.

  • Développement choisi : (par le jury)

    Pas de réponse fournie.

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    J'ai eu quelques questions sur le developpement, par exemple préciser le fait que l'espace des mesures de proba sur $R^{d}$ est métrisable compact pour la convergence étroite.

    Sinon, deux exos : un sans rapport avec la leçon, et un sur les fonctions caractéristiques.

    Que dire d'une v.a. réelle dont la fonction caractéristique vaut 1 en un $t \textgreater 0$ ?
    -\textgreater La loi charge les 2k*Pi/t.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    L'oral s'est bien passé. J'ai été surpris par le 1er exo qui n'avait pas beaucoup de rapport avec la leçon (calcul de densité marginale).

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    234 : Espaces $L^p$, $1 \le p \le + \infty$.

  • Autre leçon :

    230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.

  • Développement choisi : (par le jury)

    Théorème de Riesz-Fischer (a.k.a. Lp est complet)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions :

    Q : a-t-on des inclusions entre les Lp si l'espace est de mesure finie ?
    R : Oui, ils sont décroissants, petit temps pour le montrer.

    Q : Que se passe-t-il si l'espace est de mesure infinie ?
    R : Là j'ai dit que je savais qu'il existait des contre-exemples de fonctions qui sont dans un Lp mais dans aucun autre Lq.

    Et que si on se donnait trois indices on avait une inclusion du type précédent. J'ai commencé à écrire au tableau, mais ils m'ont arrêté pour la suite

    Q : Quelles sont les fonctions f qui convolées à elle-même sont nulles ?
    R : Là, j'ai écrit la formule de la convolution, il m'a dit "Calme-toi", j'ai fait : "Ah ok", passons par Fourier.

    Et là c'est posé.

    Q : Vous avez écrit que la transformée de Fourier d'une fonction L1 est continue, que dire de plus ?
    R : Elle tend vers 0 au bord.

    Q : Montrer le
    R : Euh, bah la démonstration que je connais … euh … repose sur une astuce … Plouf Plouf …

    Q : Admettons le résultat. La transformée de Fourier va de L1 dans les fonctions continues qui tendent vers 0 aux bords, que dire de ce second espace.
    R : c'est un Banach pour la norme infinie.

    Q : Vous avez dit que la transformée de Fourier est injective, est-elle surjective dans ces conditions ?
    R : Là, je me suis dit que je m'étais jamais posé cette question. Et j'ai répondu que je pensais pas vu qu'on introduisait L2 et S pour travailler sur Fourier en général, du coup qu'il fallait trouver un contre-exemple ou montrer que les deux espaces étaient pas isomorphes.

    Q : Comment fait-on cela ?
    R : On peut regarder le caractère séparable, là manque de bol les deux sont séparables, enfin je crois.
    ( du coup il faudrait regarder le caractère réflexif des deux machins … je sais pas si on peut s'en sortir )

    Q : Passons à autre chose ? Que dire d'une application continue bijective d'un banach dans un banach ?
    R : La réciproque est continue, par le théorème de l'application ouverte.

    Q : Ok petit con maintenant tu vas nous dire à quoi ça sert dans la vie les espaces Lp ?
    R : Euh … plouf plouf … On peut introduire les espaces de Sobolev pour résoudre des équations différentielles plus générale, et même des E.D.P.

    Q : Les espaces de Sobolev ? MAIS TU TE FOUS DE MA GUEULE ? Tu crois que tu vas les intéresser les petits cons d'aujourd'hui avec leur black berry, leur iphone et le Ternet ?
    R : Euh …

    Q : Quoi euh !
    R : Bah …

    Q : Allez dégage toi aussi t'es un petit con !
    R : Bonne journée.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'étais pas très bien vu l'oral de la veille, du coup j'ai pas parlé de tout ce que j'avais prévu dans cette leçon ( Sobolev, Stampaccia, Lax-Milgram) et j'ai surtout bien veillé à la cohérence du plan surtout sur la construction des Lp. Et je me suis retrouvé à faire une leçon sur la convolution et la transformation de Fourier au final en gros ...

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    234 : Espaces $L^p$, $1 \le p \le + \infty$.

  • Autre leçon :

    218 : Applications des formules de Taylor.

  • Développement choisi : (par le jury)

    Équation de la chaleur sur le cercle

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions de niveau moyen, même si j'ai pas forcément très bien répondu.

    Le jury était un peu relou, ils écoutaient pas vraiment, ils étaient mous, en gros j'avais un peu l'impression qu'ils s'en foutaient. Et un des mecs (J.-P. Barani) m'a plus ou moins forcé à dire que le dual de $L^1$ n'était pas $L^\infty$. J'ai pas trop insisté parce que c'est un oral, mais j'ai un peu la haine.

    Et aussi, ils ont fait n'importe quoi administrativement parlant, mais tout s'est bien passé. Enfin un peu des branleurs quoi.

    Jury : La solution que vous avez trouvé, que peut-on en dire à $t\textgreater0$ fixé ?
    Votre serviteur : Eh bien puisqu'on a montré que $(t,x)\mapsto u(t,x)$ est $C^\infty$, en particulier $x\mapsto u(t,x)$ est lisse aussi.
    J : Et comment vous le montreriez ?
    VS : Ben… Je ferais ça…
    [C'EST LE TIERS DE MON DÉVELOPPEMENT PENDARD, JE VIENS DE LE FAIRE, TU VEUX PAS ÉCOUTER UNE SECONDE ?]
    J : Ah. Et si la dérivée en temps est double, qu'est-ce qu'il se passe ?
    VS : C'est l'équation des ondes, ça ressemble plus à une équation de transport, il n'y a pas régularisation.

    Jury : Soit $f$ l'indicatrice d'un ensemble de mesure strictement positive. Sa transformée de Fourier est-elle intégrable ?
    Votre Serviteur : Non, sinon elle serait la transformée de Fourier inverse de sa transformée de Fourier, donc continue.

    J : Si $f$ et $f^{(n)}$ sont $L^p$, montrez que les $f^{(k)}$ sont bornées.
    J'en ai chié, mais Taylor, ce qui m'a valu un petit « Ah, je comprends pourquoi vous n'avez pas pris l'autre leçon. » du jury. Garder son calme.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Comme dit précédemment, jury un peu borné.

  • Note obtenue :

    18

  • Leçon choisie :

    206 : Théorèmes de point fixe. Exemples et applications.

  • Autre leçon :

    244 : Fonctions développables en série entière, fonctions analytiques. Exemples.

  • Développement choisi : (par le jury)

    Théorème du point fixe de Kakutani et sous-groupes compacts de GLn(R)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    L'exercice m'a paru plutôt difficile. On a seulement traité les cas où K est une boule, puis le cas où K est connexe par arcs. J'ai eu beaucoup d'indications, mais le jury était très pressant dès que la démo n'avançait pas, c'était assez frustrant.

    questions :

    comment prouver rapidement le résultat du développement pour les groupes finis ? avez-vous une idée pour généraliser le résultat aux groupes compacts infinis ?

    que pouvez-vous me dire sur le th. de représentation conforme ? (référence à la dernière remarque du plan qui parlait de points fixes d'homographies)

    pouvez-vous citer des applications du th. de picard en analyse fonctionnelle ?

    un exercice :

    Soit K un compact connexe de R^n, U un voisinage ouvert de K, f : U -\textgreater R^n, C^1, tel que pour tout x dans K, la norme subordonnée de df_x est \textlesser 1. Montrer que f admet un point fixe dans K.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    12

  • Leçon choisie :

    223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.

  • Autre leçon :

    209 : Approximation d'une fonction par des polynômes et des polynômes trigonométriques. Exemples et applications.

  • Développement choisi : (par le jury)

    Pas de réponse fournie.

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Il n'y a pas eu beaucoup d'exercices, ils étaient moyens sans indication, faciles avec.

    Exo 1 : Sauriez-vous montrer que $u_n=\sum_{k=0}^n\frac{1}{k!}$ converge en n'utilisant aucun outil théorique sur les séries ?

    Indication : Considérer $v_n=u_n+\frac{1}{n(n!)}$

    Exo 2 : On considère $(u_n)$ une suite réelle positive telle que : $\forall n,p\in N, u_{n+p}\leq u_n+u_p$. Montrer que $\frac{u_n}{n}$ converge

    Indication : Montrer que ça converge vers $inf \frac{u_n}{n}$

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    J'ai eu pas mal de questions sur mon plan, beaucoup de petites questions qui me faisaient approfondir des items de mon plan. Un des membres du jury (Torossian crois-je) est beaucoup revenu sur le fait que j'avais parlé de suites de v.a réelles dans mon plan.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    L'oral était pas terrible, je me suis planté en faisant Stirling ce qui est loin d'être glorieux. Sinon le jury était neutre, il ne semblait ni emballé ni lassé.

  • Note obtenue :

    12.75

  • Leçon choisie :

    236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.

  • Autre leçon :

    246 : Séries de Fourier. Exemples et applications.

  • Développement choisi : (par le jury)

    Résolution de y'' - y = H dans S'(R)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    quelques questions sur le plan et deux exos.

    - Une question sur le dev (le calcul de la transformée de $\delta_0$, je l'ai fait en le voyant comme une distrib - ça prend une ligne - et ils m'ont demandé de le faire "directement", par un calcul de transformée pour une mesure du coup)

    - Questions sur le plan : dans quels items du plan j'utilisais le théorème de changement de variable (j'explique vite fait le calcul de l'intégrale de la gaussienne notamment) ; pourquoi j'avais mentionné la marche aléatoire sur $\mathbb{Z}^d$ (c'était un exemple donné après l'intégration des $1 /||x||^{\alpha}$, je me suis embrouillé à pas trop savoir quoi dire et quoi survolé mais j'ai finalement justifié la présence du truc (on intègre des trucs de la forme $1/(1-cos(x))$) ; est-ce que j'avais un autre exemple de calcul des résidus en tête (hic, j'ai donné que mon dev 1 comme exemple, je savais pas où en chercher d'autre - ben j'en avais pas, c'est un peu con).

    - Exo 1 :

    $$
    I_n = \int_0^n (1-x/n)^n \ln(x) dx
    $$

    Donner la limite de $I_n$ (dire ce que c'est puis le montrer). En déduire la valeur de $\int_0^{\infty} \exp(-x) \ln(x) dx$.

    ---

    Que du bon calcul calculatoire de taupin. Le machin auquel on pense tend vers l'exponentielle et donc, incroyable, la limite de $I_n$ c'est l'autre intégrale.

    On commence par mettre une $\mathbb{1}_{[0,n]}$ pour que l'intégrale soit gérable, puis on fait de la CVD ; pour la domination, on peut passer par la concavité du log et hop. Pour calculer l'intégrale ensuite il va falloir une écriture explicite de $I_n$ : on change de variable pour virer les $x/n$, on découpe ce qu'il reste du log, ce qui fait poper un terme qui s'intègre directement et un autre qu'on peut calculer par IPP. On a arrêté l'exo une fois que j'avais amorcé l'IPP, on m'a vite fait demandé si je savais la limite de $\ln(n) - \sum_{k=1}^n 1/k$ qui intervient à la fin (houuuuu).

    - Exo 2 : on prend $A$ une matrice symétrique. Deviner quel exo on va bien pouvoir faire avec dans cette leçon.

    ---

    Bon, le vrai exo, c'était évidemment d'étudier $\int_{\mathbb{R}^n} \exp(-(Ax,x)) dx$, et de la calculer quand $A$ est $S_n^{++}$. Voilà, voilà...

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Quelques indications quand je mongolisais, et jury qui aide notamment à ne pas écrire de choses fausses (ils m'ont corrigé immédiatement quelques erreurs type problème de signe / objets qui disparaissent mystérieusement d'une ligne sur l'autre / ...)

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    - C'est vraiment pas beaucoup trop heures fichtre ! J'avais une bonne idée de plan, quelques bons exemples mais il m'en manquait des basiques pour illustrer certaines notions et mon plan était un peu vide.

    - Je suis tombé sur JP Barani, un colleur de ma prépa (qui ne m'a pas reconnu) qui me terrifiait. Il s'est montré plutôt sympa, finalement.

    - Globalement, je m'attendais un peu à la douche (plan OK mais maigre, développements pas trop en confiance) mais ça s'est plutôt bien passé. Dommage pour les trop nombreuses erreurs de mongol.

  • Note obtenue :

    15

  • Leçon choisie :

    205 : Espaces complets. Exemples et applications.

  • Autre leçon :

    Pas de réponse fournie.

  • Développement choisi : (par le jury)

    Densité des fonctions continues nulles part dérivables

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Deux questions sur le développement, puis principalement des exos.

    Pourquoi la fonction \[ t\mapsto \left\{\begin{array}{rl}
    \frac{f(t)-f(s)}{t-s} \esperluette \mbox{si $s\neq t$ } \\
    f'(t) \esperluette \mbox{si $s=t$}\end{array}\right. \] est-elle continue (je n'avais justifié que la continuité en $t$) ?

    A-t-on vraiment \[ D=\bigcup_{n\in \mathbb{N}} F_n \] ($D$ désignant l'ensemble des fonctions de $[0,1]$ dans $\mathbb{R}$ dérivables en au moins un point et \[F_n=\left\lbrace f\in \mathscr{C}^0([0,1],\mathbb{R} ), \exists t\in [0,1], \forall s\in [0,1], |f(t)-f(s)|\leqslant n|t-s| \right\rbrace \] ayant vocation a être un fermé d'intérieur vide) ?
    Non, on a seulement une inclusion, mais comme on montre que le membre de droite est d'intérieur vide, celui de gauche l'est aussi, et c'est ce qu'on cherche.

    Un exemple d'espace muni de deux distances dont l'une est complète et pas l'autre ?
    $ \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[ $ n'est pas complet pour la distance induite par la valeur absolue de $\mathbb{R}$, mais l'est pour la distance définie par $d(x,y)=|\tan(x)-\tan(y)|$.

    Un exemple d'espace complet non normé ?
    Un espace métrique complet qui n'est pas un espace vectoriel, par exemple celui ci-dessus.

    Comment construit-on $\mathbb{R}$ et cela se généralise-t-il ?
    En quotient l'ensemble des suites de Cauchy de $\mathbb{Q}$ par la relation d'équivalence identifiant deux suites si leur différence tend vers $0$, en faisant bien attention à remplacer les $\varepsilon$ par des $\frac{1}{k}$ dans la définition de la convergence puisque les $\varepsilon$ réels n'existent pas encore. C'est une des façons de compléter n'importe quel espace métrique, sauf que mainteant les $\varepsilon$ réels existent, donc c'est moins subtil.

    Y a-t-il une métrique qui rende $\mathbb{Q}$ complet ?
    Si on demande qu'elle induise la topologie usuelle, non par théorème de Baire. Sinon, ...

    Comment prouve-t-on le théorème de Cauchy-Lipschitz ?
    Une solution au problème de Cauchy est un point fixe de l'application \[ \varphi \longmapsto \left( t\mapsto x_0+ \int_{t_0}^t f(u,\varphi(u)) \mbox{d}u \right) \mbox{.}\] Cette application possède une itérée contractante. Le reste est technique et ne relève pas du théorème du point fixe.

    Le disque unité ouvert de $\mathbb{C}$ muni de la topologie de la convergence uniforme sur tout compact (qui est métrisable via une exhaustion compacte) est-il complet ? Pourquoi ?
    Oui, par théorème de Weierstrass, qui se prouve en utilisant la formule de Cauchy.

    Soient $E$ l'espace $\mathscr{C}^1([0,1],\mathbb{R})$ muni de la norme $\Vert f\Vert _E=\Vert f\Vert _\infty +\Vert f'\Vert _\infty $ et $F$ l'espace $\mathscr{C}^0([0,1],\mathbb{R})$ muni de la norme $\Vert f\Vert _F=\Vert f\Vert _\infty $. On note $\Phi$ l'opérateur de dérivation de $E$ dans $F$. Montrer que $\Phi(B_E(0,1))$ est d'intérieur non vide.
    $\Phi$ est linéaire et $\Vert \Phi f\Vert _F\leqslant \Vert f\Vert _E$, donc $\Phi$ est continue. Le résultat suit donc du théorème de l'application ouverte.

    Mouais, je veux bien que $F$ soit complet, c'est dans votre plan. Mais pourquoi $E$ l'est-il ?
    Si $(f_n)_{n\in\mathbb{N}}$ est de Cauchy dans $E$, $(f_n')_{n\in \mathbb{N}}$ l'est aussi dans $F$ car $\Vert f' \Vert _F \leqslant \Vert f\Vert _E$ si $f\in E$. Donc $(f_n')_{n\in \mathbb{N}}$ converge uniformément, le reste est classique.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury neutre, un des membres a clairement l'air de s'ennuyer. Questions de niveau moyen.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    13.25

  • Leçon choisie :

    254 : Espaces de Schwartz $S(R^d)$ et distributions tempérées. Dérivation et transformation de Fourier dans $S(R^d)$ et $S'(R^d)$.

  • Autre leçon :

    229 : Fonctions monotones. Fonctions convexes. Exemples et applications.

  • Développement choisi : (par le jury)

    Résolution de y'' - y = H dans S'(R)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Une seule question sur le développement. Pas de questions sur le plan. Que des exos.

    Q : Et comment on fait avec $y'' - y = T$ avec $T \in S'$ ?
    R : on fait comme dans ce qui est proposé dans plan, c'est-à-dire on convole avec la solution fondamentale.

    Q : Calculer $\widehat{H}$. (avec de l'aide en particulier pour introduire $vp(1/x)$ qui n'est pas dans le plan).
    R : $ix \widehat{H} = 1$ ok. $vp$ est l'inverse de $x$ mais c'est pas tout il y a aussi $\delta$ qui convient et là j'ai bloqué et on a changé.

    Q [le prof de prépa se réveille] : exo sur la fonction nulle part dérivable qui fait intervenir une transformée de Fourier d'une fonction.
    R : Je suis son raisonnement et on fini l'exo sans faire tous les calculs et à chaque il me font grâce des vérifications du genre 'permutation intégrale série'.

    Q : et si vous deviez enseigner les distributions à une classe de 5ème ?
    R : ahah non c'est pas vrai cette question mais j'aurais bien aimé l'avoir

    Q : Si $T \in E'$ [NB : je l'ai défini dans mon plan], alors $\widehat{T}$ est $C^\infty$ et $T$ est sous polynomiale
    R : oulah calm down cowboy ! pas eu le temps de finir et grosse galère ...

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury m'aidait beaucoup pour que ça avance. Je n'ai jamais eu le temps de bloquer plus que 30 secondes. Le jury passait soit à un autre exo soit me donnait un coup de pouce

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'ai essayé de tendre le maximum de perches possible dans mon plan ou plutôt de préparer les questions sur lesquels ils allez me coincer dans le but d'avoir des questions faciles au début. Du genre :
    - une fonction dans $D$ pas dans $S$, ou des trucs du genre ?
    - comment on démontre que $S$ est complet ?
    - $S$ est stable par Fourier ok. $D$ ?
    - la topologie sur $D$ ?

    Mais non rien de cela. Pas de questions de topologie difficiles. J'avais juste introduit quelques notions de distributions + convolution.

  • Note obtenue :

    18.25

  • Leçon choisie :

    245 : Fonctions holomorphes sur un ouvert de $C$. Exemples et applications.

  • Autre leçon :

    219 : Extremums : existence, caractérisation, recherche. Exemples et applications.

  • Développement choisi : (par le jury)

    Théorème des lacunes d'Hadamard

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Quelques questions sur le développement, une ou deux sur le plan et surtout des exos.

    ils ont voulu que j'explique plus lentement le passage 'il existe epsilon tel que D_epsilon est inclus dans phi^-1(omega)' pour ceux qui connaissent le développement
    Vous avez dit que la différentielle étaitune similitude drecte, que vouliez vous dire ? Alors bon j'explique tout un tas de trucs, en fait il voulait seulement que je dise que ça conserve les angles.
    pourquoi une série entière de rayon de convergence fini a au moins un point singulier ?
    Alors par l'absurde, si tous les points sont réguliers t'as autour de chaque point du cercle de convergence un ouvert où ta fonction se prolonge en une fonction holomorphe, t'en extrait un sous recouvrement fini par compacité du cercle et ensuite gros dilemme parce que tu peux étendre ta série en une fonction holomorphe sur un disque plus grand mais est ce que ça veut dire que ta série entière a un rayon de convergence plus grand que prévu et bah ouais, suffit de regarder la formule de Cauchy sur un cercle plus grand où ta fonction est holomorphe et ... fin regarde la preuve de 'une fonction holomorphe est analytique c'est la même idée'
    Que sont les biholomorphismes du plan ? Les fonctions affines. On suppose le biholomorphisme nul en 0, on regarde l'inverse, on montre que 0 est un pôle de multiplicité 1 de l'inverse car la dérivée en 0 de f n'est pas nul, il faut pour le voir regarder la dérivée de la composée de la fonction avec sont inverse, bref on fait mumuse. on retire à l'inverse la partie en 1/z, c'est une fonction holomorphe, on montre qu'elle est bornée, on utilise le théorème de Liouville et du coup elle est constante et même nulle et on finit par montrer que le biholomorphisme est une fonction affine et fichtre quand t'as jamais vu ça de ta vie, t'es content d'en avoir fini.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Plutôt bien passé je crois, une leçon pas évidente, j'ai répondu aux questions et leurs questions remuaient beaucoup de notions de mon plan et étaient loin d'être triviales. Ils étaient assez neutres, j'ai un peu dépassé le temps imparti à la défense de plan mais ils n'ont rien dit. J'avais quelques craintes sur mon plan, basé sur l'Amar Matheron qui démontre la formule de Cauchy en mode je suis un psychopathe, j'aime les 1-formes, mais ils ne m'en ont pas parlé, ils m'ont posé quelques questions sur d'autres points du plan, mais pas sur la partie trash.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    203 : Utilisation de la notion de compacité.

  • Autre leçon :

    215 : Applications différentiables définies sur un ouvert de $R^n$. Exemples et applications.

  • Développement choisi : (par le jury)

    Théorème du point fixe de Brouwer

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Aucune question sur le plan, ni sur la preuve de Brouwer. Ils m'ont demandé comment le généraliser à la dimension infinie.
    Rien sur mon problème de Dirichlet préparé avec tant d'amour...

    Premier exo : peut on trouver une submersion du tore sur R? (une indicationa facilité la tache)
    Deuxieme exo : opérateurs compacts, montrer la compacité de l opérateur intégration partant de $C^0$ allant dans le bon espace, calculer son spectre
    Troisieme exo :X ferme borne d un banach tel que pour tout $\epsilon$ il existe un sev de dimension finie tel que d(X, Feps)\textlesser $\epsilon$ montrer que X est compact
    j ai galéré et on m a interrompu, hésité sur le processus de diagonalisation qu il proposait (plus grosse erreur de ma part a mon avis) et on a arrete...

    Quatrième exo : f continue sur un compact avec d(f(x),f(y))\textlesserd(x,y), montrer qu on a un unique pt fixe
    une indication et pof...

    Cinquième exo : montrer que la décomposition polaire est un homéo, interrompu avant la fin... Je commencais à fatiguer.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Les questions étaient d un niveau correct, le jury était intéressé, aidait, pas cassant pour un sou, et semblait mieux supporter les 40 degrés que moi.

    Juste une n'a pas vu que j'avais parlé des opérateurs compacts (alors que c était dans le plan et ma défense).

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Je suis content de la leçon et du développement, le jury était bien...
    Seule surprise : un tableau noir avec un bord pliant, et une prise derrière qui empechait de bien le caler... Du coup il bougeait quand j écrivais... Déjà que j'ai une écriture médicale si on en rajoute...

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    219 : Extremums : existence, caractérisation, recherche. Exemples et applications.

  • Autre leçon :

    207 : Prolongement de fonctions. Exemples et applications.

  • Développement choisi : (par le jury)

    Ellipsoïde de John Loewner

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Plutôt équilibré, il y avait des coquilles dans le plan du coup ils sont revenu dessus.
    Q : comment je montre D'Alembert-Gauss (qui était dans le plan)
    R : par l'absurde, le polynome atteint un min non nul et DL en ce min

    Q : Extrema de "somme des i*x_i" sur la sphère.
    R : Extrema liés, bla bla ...(en fait il y en a pas besoin, la fonction est une forme linéaire qu'on peut donc voir comme un produit scalaire et c'est torché mais dans le cadre de la leçon c'était ce qu'ils attendaient)

    Q : f holomorphe sur C ne s'annulant pas sur le disque unité fermé et qui stabilise le cercle unité, que peut on en dire ?
    R : Elle est constante en appliquant le principe du max à f et 1/f sur le disque unité (petite subtilité ici pour 1/f puisque il faut être défini sur un voisinage du disque fermé)

    Q : Connaissez-vous des problèmes d'extrema sur des espaces de fonction ?
    R : Lax-Milgram (dans le plan) et application a une fonctionnelle obtenue à partir d'un opérateur différentiel, le min est alors solution

    Q : Un truc plus élémentaire ?
    R : Des problèmes en rapport avec les courbes

    Q : Par exemple, le plus simple ?
    R : Le plus court chemin reliant 2 pts

    Q : Comment vous faite ?
    R : On prend A et B ...[début de formalisme coupé par ce que l'oral allait se terminer, du coup heuristique]... je parle d'intégrer le produit scalaire de la dérivée du chemin et d'un vecteur unitaire colinéaire à AB, le boss accepte.

    (je n'avais pas parlé de ce genre de problèmes dans le plan, je pense du coup que c'est attendu ou au moins le mentionner dans la défense)

    Là les deux autres couillons me demandent de refaire l'exo d'holomorphie parce qu'ils ne sont toujours pas convaincu (alors qu'ils m'ont fortement incité à considérer 1/f donc a priori ils ont la même solution que moi)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Questions faciles. En ce qui concerne le jury : un sympa, un raleur (les coquilles l'ont énervé), un neutre (en mode big boss qui posait de vrais questions)

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Surpris par le type qui a demandé a ses collègues "je suis pas entrain de me faire arnaqué là ?" après avoir entendu ma réponse à son exo (tjrs l'holomorphie). J'en conclut qu'il ne faut pas se mettre trop de pression sur notre niveau, mais simplement ne pas faire d'erreurs bêtes -_-' (On le savait déjà, certes)

  • Note obtenue :

    13.75

  • Leçon choisie :

    249 : Suite de variables aléatoires de Bernoulli indépendantes.

  • Autre leçon :

    202 : Exemples de parties denses et applications.

  • Développement choisi : (par le jury)

    Marche aléatoire dans Z^d

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Pas de réponse fournie.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    262 : Modes de convergence d'une suite de variables aléatoires. Exemples et applications.

  • Autre leçon :

    208 : Espaces vectoriels normés, applications linéaires continues.Exemples.

  • Développement choisi : (par le jury)

    Décomposition de Dunford (version non algorithmique)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    D'abord des exos, puis des questions sur mon plan, qui ont entraîné d'autres exos.

    Quelques petites questions sur mon développement (pourquoi cette démonstration de la loi des GN nécessite de se placer dans $L^4$ ? donner l'énoncé du lemme de Borel-Cantelli). Puis un exo portant sur la démonstration de la loi forte des GN dans le cas $L^2$, en me donnant une piste de départ sur l'étude de la sous-suite $(S_{n^2})$ de la moyenne empirique $S_n$.
    Puis des questions sur le plan, notamment sur la démonstration du théorème de Lévy. J'ai donné les grandes lignes d'une démonstration passant par des sous-ensembles dont l'adhérence contient les fonctions continues à support compact, puis on a fait la démonstration dans le cas de la dimension 1 en passant par les distributions.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Un membre du jury avait déjà sévi dans l'épisode "Pierre P et les espaces $L^p$". Il a récidivé en soufflant dès que j'ai dit que je prenais la leçon de proba. Ensuite, durant les exos, qu'il menait pour la plupart, il n'a pas arrêté de dire que son exo permettait de faire des maths (sous-entendu plutôt que des probas). Il est allé jusqu'à demander à son acolyte s'il l'autorisait à me poser une question portant sur une démonstration du thm de Lévy par les distributions tempérées. Il m'a ensuite demandé mon approbation : "Connaissez-vous les distributions tempérées ?". Lorsque j'ai répondu oui, il a ensuite été très souriant et content de pouvoir faire des maths.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Surpris d'avoir eu à faire un exo reposant essentiellement sur la transformée de Fourier dans $S'(\mathbb R)$, mais plutôt content de l'avoir eu car les distributions faisaient partie de mes leçons préférées.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    262 : Modes de convergence d'une suite de variables aléatoires. Exemples et applications.

  • Autre leçon :

    203 : Utilisation de la notion de compacité.

  • Développement choisi : (par le jury)

    Inégalité de Hoeffding

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    D'abord des questions portant sur le plan (visiblement posées par quelqu'un qui l'avait mal lu, car les réponses étaient dedans), puis des exercices.

    Pourquoi la famille $n\mathbb{1}_{[0,1/n]}$, que j'avais mise comme exemple, n'est-elle pas uniformément intégrable ?

    Justifier l'inégalité de Hoeffding comme développement dans cette leçon (comme si je ne l'avais pas fait dans ma défense du plan !) et donner une autre inégalité du même genre, mois fine (comme si la loi des grands nombres $L^2$ ne se trouvait pas dans mon plan juste avant Hoeffding !).

    Comment montrer la formule de Stirling avec le théorème central limite ? (j'avais mis la propriété dans mon plan).

    Condition nécessaire et suffisante pour que $\sum_{k=1}^n X_k$ converge en loi, où les $X_k$ sont indépendantes et $X_k$ a la loi $\mathcal{N}(0,\sigma^2)$.

    Montrer que si les $X_k$ sont iid de loi de Cauchy, $\frac{X_1+\cdots+X_n}{n}$ converge en loi mais pas presque-sûrement (pour cette dernière propriété, j'ai parlé de tribu asymptotique et ils m'ont demandé le lemmme de Borel-Cantelli). J'ai reçu des indications.

    Si les $X_n$ sont indépendantes avec $X_n$ de loi $Ber(1/n)$, les $X_n$ convergent en probabilité, mais pas presque-sûrement.

    Si les $\epsilon_n$ sont iid avec $\mathbb{P}(\epsilon_n=1) = \mathbb{P}(\epsilon_n=-1)=1/2$ et $(a_n)_n$ est une suite de réels, donner une CNS pour que $\sum_{k=1}^n\epsilon_k a_k$ converge dans $L^2$, puis montrer que cette condition est aussi une condition de convergence dans $L^4$.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    20

  • Leçon choisie :

    205 : Espaces complets. Exemples et applications.

  • Autre leçon :

    222 : Exemples d'équations aux dérivées partielles linéaires.

  • Développement choisi : (par le jury)

    Théorème de Banach-Steinhaus et série de Fourier divergente

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Deux questions sur le développement pour voir en gros si je ne suis pas un tocard.

    Soit $f$ continue avec $f(a)=0$. Montrer que l’ensemble des points $x$ tels que la suite $u_{n+1}=f(u_n)$ partant de $x$ converge vers a est un ouvert.
    - On utilise la continuité des itérés de $f$.

    On se place dans un Hilbert $H$ séparable. Montrer que si $(u_n)_n$ converge faiblement vers $u$, alors $(||u_n||)_n$ est bornée.
    - On utilise Banach-Steinhaus.
    Soit $(e_k)_k$ une base hilbertienne de $H$. Montrer que $(u_n)_n$ converge faiblement vers $u$ si et seulement si pour tout $k$, $\langle u_n,e_k\rangle \to \langle u,e_k \rangle$.
    - Le sens direct est évident. Je me suis pas mal embrouillé dans les arguments et les notations, mais ça se fait plutôt bien avec Cauchy-Schwarz et une interversion de limite. On est passé à un autre exercice.

    On se place dans $L^2 ([0,1])$. On note $e_k : x \mapsto x^{1/k}$. Montrer que la famille $(e_k)_k$ est une famille totale.
    - On montre que l’orthogonal de cette famille est nul. (Indication : introduire $F(z) = \int_{0}^{1} f(x)x^z \mathrm{d}x$) La fonction $F$ est holomorphe grâce au théorème d’holomorphie sous l’intégrale (J’ai galéré dans le critère de Riemann pour donner son domaine de définition). Avec le théorème des zéros isolés, $F = 0$. En particulier $F(k) = 0$ pour tout $k$ et on conclut avec le théorème de Weierstrass.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était plutôt sympa, et donnait des indications quand je galérais mais me laissait aussi réfléchir. Ils n'ont pas trop aimé que je bute sur le critère de Riemann par contre, normal !

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Tableau blanc et grand.

  • Note obtenue :

    19.75

  • Leçon choisie :

    243 : Convergence des séries entières, propriétés de la somme. Exemples et applications.

  • Autre leçon :

    233 : Analyse numérique matricielle : résolution approchée de systèmes linéaires, recherche de vecteurs propres, exemples.

  • Développement choisi : (par le jury)

    Nombres de Bell

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    J'ai eue des questions sur le plan (notamment sur des propositions fausses que j'ai corrigé à l'oral) et sur la convergence de mes contre exemples de séries qui convergeaient ou non sur leur disque de convergence (trouvé dans le Hauchecorne)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Plutôt pas content mais pas méchants. Le jury a pas du tout apprécié l'exemple du Gourdon d'utilisation du théorème d'Abel car il y a plus simple que ça pour le résoudre (et il me l'on demandé en questions). Aussi, du au stress j'ai mal définis les Ek dès le début de mon développement donc ils m'ont arrété (et redemandé une définition plus rigoureuse en nommant mes partitions à la fin du développement). Aussi, ça a perturbé le jury que mes indices k et n soient inversés àla fin de ma preuve par rapport à l'énoncé.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Mon développement à duré trop longtemps (17 min avec leur intervention) mais ils me l'on dit et m'ont laisser quand même conclure (donc c'est cool, ils étaient pas à la minute près). Sinon c'est long 20 min de questions, ça ressemble beaucoup aux oraux de concours je trouve.
    PS: j'ai pas encore ma note (je pense que ça se voit)

  • Note obtenue :

    20

  • Leçon choisie :

    206 : Théorèmes de point fixe. Exemples et applications.

  • Autre leçon :

    218 : Applications des formules de Taylor.

  • Développement choisi : (par le jury)

    Théorème d'inversion locale

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Défense bien passée, même si le jury était à moitié mort (je passe à 16h durant la dernière semaine d'oral), l'un avait les yeux fermés la plupart du temps. Durant le développement, j'ai senti le jury très peu réceptif, et pas convaincu, du coup j'ai perdu confiance, j'ai réexpliqué des choses et perdu du temps inutilement : ils m'ont demandé de conclure rapidement alors qu'il me restait une partie du développement à montrer. J'ai donné les étapes. Ils m'ont demandé comme première question de détailler le dernier point (montrer que homéo implique difféo sur la réciproque).
    -Ex: pouvez-vous appliquer ça (inversion locale) pour montrer que une fonction holomorphe est d'image ouverte. J'ai évacué le cas où la dérivée en un point est non nul, car on applique l'inversion locale. Ensuite, j'ai un peu galéré. Ils m'ont orienté vers l'écriture de la série entière en ce point. J'ai introduit le premier coefficient non nul, et ils m'ont dit de montrer qu'alors on avait pas forcément un difféo, mais qu'on avait en fait un difféo à la puissance $p$. On factorise le terme en $z^p$ puis il reste un terme qui est non nul en $0$, donc on a une détermination locale du logarithme et donc une puissance 1/p-ième.
    -Ex: Montrer qu'une fonction croissante de $[0,1]$ dans lui-même a un point fixe. J'ai fait un dessin, posé $c=\inf\{x; f(x)\leq x\}$. Ils m'ont demandé de dire des choses sur l'ensemble considéré, j'ai surtout parlé du fait qu'il n'était pas fermé, mais ils attendaient simplement qu'il était non vide et minoré. Ensuite, j'ai montré que si $c$ appartenait à l'ensemble, c'était fini. Puis j'ai pris $(x_n)$ qui tend en décroissant, et je voulais montrer que $c$ était dans l'ensemble. J'ai un peu galéré, mais en regardant la bonne inégalité, on obtient le résultat.
    -Ex: que dire de la différentielle autour d'un point fixe d'une fonction telle qu'il existe un intervalle attractif ? Réponse donnée : norme $\leq$1. Car sinon, on aurait une direction telle que la dérivée soit $>1+\vareps$ et des histoires de stabilité.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury endormi au début (littéralement un qui luttait contre le sommeil pendant défense et développement), puis, allant de tout mou à très sec dans son attitude.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    19

  • Leçon choisie :

    239 : Fonctions définies par une inégrales dépendant d'un paramètre. Exemples et applications.

  • Autre leçon :

    262 : Modes de convergence d'une suite de variables aléatoires. Exemples et applications.

  • Développement choisi : (par le jury)

    Densité des polynômes orthogonaux

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    J'ai été étonné car j'ai eu beaucoup de questions sur mon développement et sur mon plan, mais presque aucun exercice.

    Sur mon développement (densité des polynômes orthogonaux) ils m'ont demandé pourquoi il suffisait de montrer que $ \int fx^n=0 \forall n \Rightarrow f=0$ pour avoir la densité, je me suis un peu embrouillé en parlant d'abord des conséquences de Hahn Banach (la caractérisation des sous espaces denses par les formes linéaires), puis ils m'ont rappelé qu'on était dans un Hilbert et j'ai fait la démo normale.

    J'ai eu des questions un peu bizarre, genre pourquoi $\hat{f}=0 \Rightarrow f=0$, alors que j'avais dit trois fois qu'à cet endroit là j'utilisais l'injectivité de la transformée de Fourier. Aussi dans le développement on se place sur un intervalle $I$ et ensuite on se ramène à une fonction sur $\mathbb{R}$, et ils m'ont demandé à quoi servait l'intervalle $I$, pas trop compris...

    Questions sur le plan :
    -Pourquoi j'ai rayé le Lemme du Riemann-Lebesgue dans mon plan? Parce que je me suis rendu compte que je l'avais déjà mis avant sous une autre forme héhé
    -Pourquoi si $f,g\in L^1$ alors $f \star g \in L^1$. Meme chose avec $f\in L^p, g\in L^q$
    -Vous avez dit qu'on a pas besoin de la convergence dominé pour montrer le théorème d'analycité sous l'intégrale, pourquoi? Parce que voilà : paf recasage de la démo que j'avais relu 5mn avant (cf Faraut, si je me trompe pas c'est juste un théorème moins fort d'interversion de somme et d'intégrale). Hmm oui mais non, alors comment on caractérise une fonction analytique en terme de différentielle? Ben comme ça. Bon ok. Fin de la question
    -Qu'est ce qu'il se passe dans le théorème de continuité si on intègre sur un segment? Ben ça marche tout le temps pour peu que la fonction soit continue en les deux variables

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Un des membres du Jury avait l'air de comprendre tout ce que je disais, du coup quand les autres comprenaient pas une démonstration ils lui demandaient "tu as compris?" il disait oui et on passait à autre chose, c'était un peu le boss final de l'oral. Un autre m'a un peu énervé (le prof de prépa je pense) parce qu'il posait mal ses questions et je comprenais pas ce qu'il voulait dire... Par exemple à un moment dans mon plan je parlais du lien entre la fonction gamma et la surface d'une sphère, et donc j'introduit une mesure (cf Faraut) définie en fonction de la mesure de Lebesgue (pour info, si $\lambda$ est la mesure de lebesgue, la nouvelle mesure c'est $ \sigma(E)=\lim\limits_{\epsilon\rightarrow 0}\frac{1}{\epsilon}\lambda(\{ru | u\in E, 1 \leq r \leq 1+\epsilon\})$). Je sais pas ce qu'il a pas aimé la dedans, mais il trouvait cette mesure bizarre (alors que le boss avait l'air d'accord avec ce que je disais) et il m'a parlé de ça pendant longtemps, ça a un peu cassé le rythme de l'oral.

    Quand le boss a enfin pu me poser des questions il avait l'air très content, il souriait et je l'ai même fait rigoler. Jury plutot agréable dans l'ensemble, à aucun moment ils n'ont cherché à me déstabiliser ou à me piéger.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    209 : Approximation d'une fonction par des polynômes et des polynômes trigonométriques. Exemples et applications.

  • Autre leçon :

    232 : Méthodes d'approximation des solutions d'une équation $F(X) = 0$. Exemples.

  • Développement choisi : (par le jury)

    Équation de la chaleur sur le cercle

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Beaucoup de questions sur mon développement,
    des exercices de convergence dominée et de dérivation sous l'intégrale sur lesquelles j'ai buggué comme un gros nul
    Déroutant, d'autant plus que j'avais bien préparé cette leçon et mis des exemples originaux sur lesquels je voulais être questionné.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bizarre. Beaucoup de questions de bases.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas content ... J'ai donné mauvaise impression au début et j'ai jamais vraiment eu le temps de remonter.

  • Note obtenue :

    9.25

  • Leçon choisie :

    236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.

  • Autre leçon :

    214 : Théorème d'inversion locale, théorème des fonctions implicites. Exemples et applications.

  • Développement choisi : (par le jury)

    Formule d'inversion de Fourier dans S(Rd) ou L(Rd)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement :
    Ils m'ont fait corriger les quelques erreurs que j'avais écrites.
    Détailler Fubini, préciser la définition du produit de convolution, pourquoi a-t-on convergence dans $L^p$ de $f*h_n$ vers $f$ (avec $h_n$ approximation de l’unité), puis pourquoi a-t-on la continuité de l’opérateur de translation (densité des $C_c$), enfin pourquoi si on converge dans $L^p$ on a une suite extraite qui converge pp.

    Le probabiliste se réveille :
    - Qu’est-ce que ce corollaire d’extraction dit au niveau des v.a.
    Je n’ai pas tout de suite très bien compris ce qu’il voulait me faire dire, il m’a demandé alors les implications des différents modes de cv de va et j’ai répondu.
    - Que peut-on dire en l’infini de la transformée de Fourier de $f$ ? Riemann Lebesgue.
    - Est-ce vrai pour la transformée de Fourier d’une mesure ? Non avec les Dirac
    - Quand est-ce vrai ? Là j’ai dit que je ne savais pas précisément, ça marche si on est absolument continue par rapport à Lebesgue (oui bon d’accord…) puis j’ai parlé du théorème de Lévy mais c’est pas vraiment ce qu’il attendait.
    Le probabiliste se rendort.

    Exercice : Calculer $\int_0^\infty \frac{1}{1+x^n}dx$
    J’ai dit qu’on pouvait utiliser des résidus (j’avais mis cette intégrale avec $n=4$ dans mon plan), puis ils m’ont fait chercher un contour, j’ai un peu galéré parce qu’on ne pouvait pas prendre le demi cercle supérieur comme je l’avais mis dans le plan, il fallait réduire en un domaine plus petit (type camembert) avec le bon angle, que j’ai galéré à trouver (alors que c’était juste $2 \pi /n$…).

    Exercice : le probabiliste se réveille à nouveau. On prend deux va normales centrées réduites indépendantes $X$ et $Y$, calculer la loi de $X/Y$. J’ai dit qu’il fallait calculer $E[f(X/Y)]$ pour $f$ borélienne positive quelconque, faire un changement de variables. Je me suis un peu embrouillé avec l’intégrale, je ne savais plus si j’intégrer sur $\mathbb R$ ou $\mathbb R^2$, bref c’était pas très joli à voir, surtout que j’ai fini par écrire le changement de variables en oubliant de déterminant du jacobien...le boss me dit alors « et c’est tout », et je réponds, genre j’y avais pensé, non il faut le déterminant du jacobien. Pas eu le temps de finir.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Trois profs : un boss, une dame, un probabiliste.
    Le boss menait la discussion, le probabiliste posait les questions de probas (eh oui !), la dame n'a rien dit.
    Jury très neutre.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Très stressé au début de l’oral (c’était mon premier), donc des erreurs sur le développement qu’ils m’ont fait corriger (il manquait une intégrale puis il y en avait une qui n’avait pas lieu d’être).
    3h c'est court !! J'ai été un peu pris par le temps, donc je n'ai pas eu le temps de relire mes développements...ce qui m'aurait éviter plusieurs erreurs.
    Suivez les conseils de Danthony !!!! J'ai eu toutes la ribambelle de questions sur des preuves de convolution, j'étais bien content de savoir y répondre avec les bons arguments dans l'ordre.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    264 : Variables aléatoires discrètes. Exemples et applications.

  • Autre leçon :

    214 : Théorème d'inversion locale, théorème des fonctions implicites. Exemples et applications.

  • Développement choisi : (par le jury)

    Pas de réponse fournie.

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le développement que j'ai choisi est la ruine de joueur. Je me suis emmêlé les pinceaux à un endroit dans une erreur de calcul. J'ai admis une partie du résultat pour avoir le temps de faire la suite. A la fin du développement, le jury m'a demandé de corriger rapidement mon erreur d'étourderie, ce que j'ai fait en prenant un peu de recul sur le tableau.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Un membre du jury ne devait pas aimer les probas car n'a pas parlé. Les deux autres ont posé pas mal de questions et des exercices. On m'a demandé de démontrer le résultat du développement de Poissonisation (évènements rares) avec des indications. Je pense avoir mené une bonne démarche en traitant un cas particulier plus facile pour en déduire le cas général mais ai buggé dans la formule de Taylor-Lagrange avec reste intégral à l'ordre 2 ce qui je crois a beaucoup déplu au jury ... Il faut surtout ne pas dire de bêtises sur des choses de bases du programme de prépa !!!

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    203 : Utilisation de la notion de compacité.

  • Autre leçon :

    263 : Variables aléatoires à densité. Exemples et applications.

  • Développement choisi : (par le jury)

    Ellipsoïde de John Loewner

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Pas de réponse fournie.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    220 : Équations différentielles $X' = f(t,X)$. Exemples d'étude des solutions en dimension $1$ et $2$.

  • Autre leçon :

    209 : Approximation d'une fonction par des polynômes et et des polynômes trigonométriques. Exemples et applications.

  • Développement choisi : (par le jury)

    Théorème de Cauchy-Lipschitz local

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -Retour d'abord sur le développement (sur lequel j'étais bien content d'être tombé parce que Liapounov ...) où j'ai écrit un peu n'importe quoi au niveau des indices de la récurrence (j'ai vite corrigé), ils m'ont demandés d'essayer de généraliser l'énoncé pour juste des fonctions continues, si on avait toujours le résultat pour des fonction C1 (inégalité des accroissement finis), et ce qu'on pouvait dire si la fonction était globalement lipschitzienne (solutions maximales).

    -Ensuite retour sur le plan où ils m'ont demandés de justifier mes graphique de solutions, ils m'ont aussi parlés de portrait de phase (j'étais pas au point la dessus). J'ai du justifié un ou deux autres points de mon plan (notamment un comportement aux bords) puis ils m'ont donnés un exercice où je devais parler des solutions d'une équation d'ordre 2 (je n'avais donné que des exemples d'ordre 1 dans mon plan).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury légèrement moins souriant que la veille (pourtant il faisait moins chaud ^^) mais jamais méchant et toujours enclin à vous aider dès que vous n'y arrivez plus.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Les surveillants étaient un peu plus réactifs que la veille pour la préparation, sinon toujours 3h10 entre le tirage du sujet (et son ouverture) et la fin de la préparation.

  • Note obtenue :

    7.75

  • Leçon choisie :

    228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.

  • Autre leçon :

    236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonction d'une ou plusieurs variables.

  • Développement choisi : (par le jury)

    Sous-espace stable par translation

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Mon autre développement était l'exemple d'une fonction continue nulle part dérivable.
    Remarque sur le développement :
    -la fin de version habituellement trouvée sur internet est inutile puisque la relation fi'(t)=somme(bik'(0)fk(t)) donne directement f comme solution d'EDL homogène à coeffs constants. La fin avec l'histoire de poly minimal ne sert donc à rien...
    -exemple d'un ev de dim 3 non stable par translation ?
    -forme générale des solutions d'EDL h à coeff constants ?
    -qu'est-ce qu'un opérateur compact ?
    -qu'est-ce qu'une partie équicontinue ?
    -pourquoi l'opérateur à noyau que vous présentez est bien un opérateur compact ?
    -comment démontre-t-on le théorème de Baire ?
    -que se passe-t-il pour le théorème des fermés emboîtés si l'on ne suppose plus que le diamètre tend vers 0 ?
    Deux exercices:
    -une fonction qui admet une limite à droite en 0 et une limite à gauche en 0 mais ces limites sont différentes peut-elle être la dérivée d'une fonction ? (non via Darboux, dur à formaliser)
    -on a (fn) suite de fonctions continues qui CVS vers f continue sur [0,1], y'a-t-il CVU ? (réponse non...)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Un des trois était un peu sec sur le premier exo car je n'arrivais pas à formaliser correctement. Sinon plutôt sympas.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Beaucoup de questions sur le plan, exercices pas si évidents. Ils n'ont pas du tout creusé les exemples de mon plan (par ex l'opérateur à noyau), il leur suffisait juste que j'explique grosso modo la méthode. Mais il faut quand même maîtriser un minimum ce qu'on met dans le plan.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    234 : Espaces $L^p$, $1 \le p \le + \infty$.

  • Autre leçon :

    226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples. Applications à la résolution approchée d'équations.

  • Développement choisi : (par le jury)

    Théorème de Riesz-Fischer (a.k.a. Lp est complet)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    On est d'abord revenus ensemble sur quelques détails de la démo de Riez, quelques précisions. Ensuite ils m'ont posé des questions sur mon plan :
    - pas mal de questions sur les modes de convergence de VAR (j'avais une partie probas)
    -questions sur le dual de Lp que j'avais admis, du coup ils m'ont demandé l'utilité du dual.
    - j'ai eu une série de question sur L2 en tant que Hilbert, produit de convolution, quelques ensembles denses etc..

    Ensuite on est passés aux exos.
    1) Donner un exemple d'espace mesuré tels que les Lp soient croissants.
    R: N muni de la mesure de comptage, on écrit norme Lp de f et on a le terme d'une série convergente donc qui tend vers 0. À partir d'un certain rang on est <1 et donc on a la croissance des Lp.

    2) soit g dans L2(R)
    ON suppose que g est orthogonale à toute indicatrice de segment [a,b]. Que dire de g ?
    Intuitivement on sent que g est nulle precisons-le : Par densité des fonctions engendrées par les indicatrices. Et d'après la caractérisation dans un Hilbert qu'un sev est dense ssi son orthogonal est réduit à 0

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury très sympathique des que la porte s'est ouverte, ça m'a vraiment déstressé de les voir ! Ils étaient agreables et pas cassants du tout. Ils me demandaient de préciser mon propos lorsque je n'étais pas clair. Et on sentait vraiment que les questions étaient là pour tester les limites du candidat et pas pour le détruire !

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Je suis surpris, je m'attendais à être détruis par le jury. Grosse surprise de ce côté là. La préparation s'est bien passé. J'ai fini en 1h30 mon plan. J'ai pu m'entraîner à redémontrer tout les résultats de mon plan et les contre exemples.

  • Note obtenue :

    10

  • Leçon choisie :

    245 : Fonctions holomorphes sur un ouvert de $C$. Exemples et applications.

  • Autre leçon :

    235 : Problèmes d'interversion de limites et d'intégrales.

  • Développement choisi : (par le jury)

    Théorème d'uniformisation de Riemann

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Défense de plan ok, jury attentif, puis développement (uniformisation de Riemann).
    Quelques questions sur le développement (pourquoi existe-t-il une racine carrée holomorphe, pourquoi l'image d'un ouvert simplement connexe par une application continue est-elle simplement connexe, pourquoi là c'est ouvert etc.)
    Comment démontre-t-on le théorème de Montel ? (Ascoli car équilipschitz car on contrôle les dérivées grâce à la formule de Cauchy blabla)
    Puis séances de questions :

    Q : montrer que $\forall z \in \mathbb{C} \setminus \mathbb{Z}$ on a $\pi cotan( \pi )z = \sum_{n \in \mathbb{Z}} \dfrac{1}{z-n}$
    R : alors bah déjà j'vais arranger le terme de droite pour bien dire que c'est convergent, puis après je vais isoler le terme d'ordre zéro... Ces deux fonctions sont méromorphes je vais montrer qu'elles ont les mêmes pôles...

    Q : oui mais elles ont quoi d'autre comme propriétés ?
    R : ah oui 1-périodique donc je regarde que le pole en zéro... je le fais. Quelques fois, mes méthodes de calculs ne lui plaisent pas trop (j'ai été partisan du plutôt faire plus que faire moins mais visiblement ils voulaient que j'aille moins loin dans les détails). Après faut borner quand la partie imaginaire explose je le fais... Puis Liouville, la différence est entière bornée .. et la limite en l'infini vers les imaginaires complexes donne le résultat

    Q : existe-t-il une fonction holomorphe au voisinage de zéro telle que $\forall n \in \mathbb{N}^*,~ f(1/n) = (-1)^n / n^3$ ?
    R : (là je sens bien que la réponse est non) bah euh j'vais voir... je suis parti dans la mauvaise direction je voulais regarder g(z) = f(1/z) mais elle m'a dit "non non regardez elle vaut quoi en zéro ? Ah oui : du coup f(z) = o(z) donc en fait f(z) = C z^2 + o(z^2) je mets 1/n donc C = 0... du coup après en allant à l'ordre supérieur on a que C' = (-1)^n pas possible ca doit etre constant et voilà

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury très sympa, mais seuls deux d'entre eux ont discuté (la troisième personne ne devait pas être très branchée analyse complexe)
    Je crois que je leur ai coupé la parole à un moment mais ils ne m'en ont visiblement pas voulu

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui très bien. Aucune surprise sur ce point de vue là, j'avais bien bossé la leçon.

  • Note obtenue :

    19.75

  • Leçon choisie :

    243 : Convergence des séries entière, propriétés de la somme. Exemples et applications.

  • Autre leçon :

    204 : Connexité. Exemples et applications.

  • Développement choisi : (par le jury)

    Espace de Bergman du disque unité

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    - sur le développement, on m'a demandé de trouver une CNS sur les coefficients du développement en série entière de f autour de 0 pour que f soit dans l'espace de Bergman (réponse : si $f(z)=\sum\limits_{n=0}^{+\infty} a_n z^n$, la CNS est $\sum\limits_{n=0}^{+\infty} n|a_n|^2 <+\infty$)
    - une série entière de rayon de convergence 1 converge-t-elle uniformément sur tout le disque ? (c'est possible, cf $\sum \frac{z^n}{n^2}$, mais pas vrai en général, cf $\sum z^n$)
    - dans le thème de cette question, on m'a demandé de déterminer les $z$ de module 1 tels que $\sum \frac{z^n}{n}$ converge (faire une transformation d'Abel)
    - quel est le rayon de convergence de la série entière $\sum \left(\frac{(-1)^n}{n}+\frac{cos n}{n!}\right) z^n$ ?

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était sympa mais insistant quand je ne trouvais pas, ils aidaient pas mal.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    8.75

  • Leçon choisie :

    202 : Exemples de parties denses et applications.

  • Autre leçon :

    260 : Espérance, variance et moments d'une variable aléatoire.

  • Développement choisi : (par le jury)

    Théorème de Sard (version faible)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    1. Est-ce que $\sum\limits_{n}z^n$ est dans l'espace de Bergman du disque unité?
    2. Quelle est la transformée de Fourier de $x\mapsto\frac{1}{\sqrt{1+x^2}}$?

    Pendant la résolution de ce deux exercices de nombreuses questions m'ont étaient posées, notamment sur la convergence des séries entières, la détermination de leur rayon de convergence et les intégrales semi-convergentes.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    L'un des trois membres du jury faisait mine de s'endormir, un autre me mitraillait de questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Aucune surprise.

  • Note obtenue :

    15.00

  • Leçon choisie :

    226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples. Applications à la résolution approchée d'équations.

  • Autre leçon :

    204 : Connexité. Exemples et applications.

  • Développement choisi : (par le jury)

    Méthode du gradient conjugué

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Remarque : j'ai présenté la méthode du gradient à pas optimal (non répertorié ici).
    On m'a posé des questions autour du développement. J'y ai plus ou moins bien répondu. Ensuite on m'a donné un exercice sur les suites récurrentes. Puis un autre qui faisait intervenir des notions de séries et un dernier pour savoir comment passer d'une suite récurrente d'ordre 2 à une suite récurrente d'ordre 1.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était très vif, pas trop le temps de répondre. Donner les idées suffisaient généralement. Sinon il était bienveillant.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    203 : Utilisation de la notion de compacité.

  • Autre leçon :

    222 : Exemples d'équations aux dérivées partielles linéaires.

  • Développement choisi : (par le jury)

    Pas de réponse fournie.

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Pas de réponse fournie.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.

  • Autre leçon :

    207 : Prolongement de fonctions. Exemples et applications.

  • Développement choisi : (par le jury)

    Pas de réponse fournie.

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Mes 2 autres développements: UC des translation +Riemann Lebesgue (dév choisi) et la ln convexité de Gamma (que l'on peut trouver dans le bouquin A curse of integration de Lerner)

    Autres références: Daniel Li, Cours d'analyse fonctionnelle et A curse of integration de Lerner

    1ière question: C'est quoi la définition d'une suite qui tend vers 0? Parce que vous l'avez mal montré dans la démonstration de l'UC des translations.
    J'ai pas su répondre correctement mais je pense que comme y'avait tous les éléments dans mon développement ils ont pensé que c'était juste dû au stress/fatigue.

    2ième question: Soit A mesurable de R^n de mesure non nulle et de mesure finie. Montrer que A+(-A) contient un voisinage de 0.
    Indication: Poser f=indicatrice de A, g=indicatrice de -A et convolez. Je dis pk la convolée a un sens et j'écris seulement la définition de la convolution parce que je ne vois pas où ils veulent en venir.
    Que pouvez-vous dire de la régularité? Je réponds que c'est continue et que ça tend vers 0 en l'infini parce que c'est L2/L2
    C'est quoi le résultat de la convolée en 0? c'est égale à la mesure de A
    Concluez. J'ai pas su conclure

    3ième question: Est-ce toutes les fonctions de L1 ont une transformée de Fourier L1? Moi bêtement je cherche à calculer la transformée de fourier d'une indicatrice... et j'y suis arrivé tellement péniblement qu'ils m'ont arrêté.
    Une meilleure réponse eût été que si c'était le cas, alors en utilisant l'inversion de Fourier on aurait que toutes les fonctions de L1 auraient un représentant continu ce qui n'est pas le cas....

    4ième question: On pose F(t)= l'intégrale de -l'infini à + l'infini de e^(izx+itx)dx
    Calculez-là.
    Je vois bien que c'est la transformée de fourier d'une gausienne dilatée mais je cafouille énormément et j'oublie même de dire à quelles conditions sur z c'est intégrale existe... Le coup du i devant le z me perturbe et en plus j'avais oublié ma référence dans lequel ce calcul est fait.
    J'ai montré que la fonction était holomorphe sous le signe somme.
    Je ne me souviens plus très bien mais en gros ça c'est terminé par comment calculeriez-vous cette intégrale? On prend des z sur lesquels on peut calculer facilement l'intégrale puis à l'aide du théorème de prolongement des identités on trouve le résultat en général.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Il y avait une femme muette à part quand elle a posé la 4ième question... et là j'ai compris pourquoi, elle ne parle pas bien français... j'ai mis 5 minutes à comprendre la question et les 2 autres gugusses ne m'ont pas aidé à l'écrire...
    De temps en temps je disais que je ne voyais pas où ils voulaient en venir mais ils se contentaient de me regarder puis au bout de quelque temps sans qu'il ne se passe rien j'avais le droit à une indication ou alors on passait à une autre question.

    Je pensais vraiment que j'aurais 5....

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    La différence de niveau de la 1ère réelle question (pas celle sur mon dév) et de mon plan m'a paru abyssale ...
    J'ai oublié une de mes références d'intégration :/

    Déçu de ne pas pouvoir reprendre mon plan :/

  • Note obtenue :

    12

  • Leçon choisie :

    226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples. Applications à la résolution approchée d'équations.

  • Autre leçon :

    203 : Utilisation de la notion de compacité.

  • Développement choisi : (par le jury)

    Méthode de Newton pour les polyômes

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -Donner un exemple qui rend utile l'énoncé de Picard-Banach sur un espace complet (Réponse : Cauchy-Lipschitz)
    -Tracer+Calculer l'équation de la droite dans la méthode de la sécante.
    -Expliquer le lien entre les conditions de stabilité des points fixes, et la stabilité des solutions des EDL (Réponse : Le module des v.p. doit être \leq 1 pour une stabilité, avec en plus une condition sur la dimension des espaces propres)
    -Faire le calcul de la différentielle de l'application apparaissant dans la méthode de Newton-Raphson (J'ai fini sur cette question)

    A part cela, je n'ai eu aucune question sur le plan, et je ne crois pas avoir eu d'autres questions sur le développement.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury a été bienveillant et gentil. J'ai passé beaucoup de temps sur le calcul de la différentielle, et il a essayé de m'aider à terminer le calcul malgré le fait que je ne comprenais pas vraiment comment utiliser ses indications.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Je pensais avoir plus de questions concernant les suites récurrentes (notamment sur des équivalents, l'utilisation de DL,...), mais hormis la question portant sur le Th de Picard-Banach, je n'ai eu que du petit calcul ou des questions de stabilité de solutions.

  • Note obtenue :

    16.75