(2015 : 229 - Fonctions monotones. Fonctions convexes. Exemples et applications.)
Les propriétés de continuité et de dérivabilité à gauche et à droite des fonctions convexes de la variable réelle sont attendues. Il est souhaitable d'illustrer la présentation de la convexité par des dessins clairs, même si ces dessins ne peuvent remplacer un calcul. On notera que la monotonie concerne (à ce niveau) les fonctions réelles d'une seule variable réelle, mais que la convexité concerne également les fonctions définies sur une partie convexe de $\mathbb{R}^n$, qui fournissent de beaux exemples d'utilisation.
Pour les candidats solides, la dérivabilité presque partout des fonctions monotones est un résultat remarquable (dont la preuve peut être éventuellement admise). L'espace vectoriel engendré par les fonctions monotones (les fonctions à variation bornée) relève de cette leçon.
Pour les candidats aguerris, la dérivation au sens des distributions fournit les caractérisations les plus générales de la monotonie et de la convexité et les candidats bien préparés peuvent s'aventurer utilement dans cette direction.