Retours d'oraux

Des retours d'expériences des années précédentes.

Liste des retours de l'année 2019 :

  • Leçon choisie :

    142 : PGCD et PPCM, algorithmes de calcul. Applications.

  • Autre leçon :

    152 : Déterminant. Exemples et applications.

  • Développement choisi : (par le jury)

    Algorithme d'Euclide étendu et complexité

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le jury m'a posé quelques questions pour bien refixer les hypothèses de ma leçons. Puis est passé à une lecture plus approfondie du plan.
    Après quelques questions pour me demander si je pouvais un peu plus généraliser certains résultats de mon plan ou les réécrire pour éviter d'utiliser des termes partant un peu trop loin (comme ensemble réticulé, pour définir pgcd et ppcm), l'un des jury a remarqué (à voix haute) que mon plan manquait d'exemple.
    La fin de l'échange a donc été constitué de recherche de contre-exemples à mon plan (Donner un idéal non-monogène de Z[X], par exemple).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était très sympathique, bien que peu souriant. Bien que l'un d'entre eux semblait commencer à se tendre vers la fin, ils m'ont tous les trois encouragés à avancer lorsque je touchais une corde sensible de leurs questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'ai été beaucoup plus rapide lors de cette préparation qu'au moment de mes oraux blancs. Pour autant, il ne faut pas prendre tout son temps ;).
    Le jury me mettait étrangement en confiance et était très apaisant (moi qui ai eu à résoudre de gros soucis de stress, à côté du travail propre au concours). Cette dernière remarque concerne d'ailleurs l'ensemble de mes épreuves !

  • Note obtenue :

    10

  • Leçon choisie :

    228 : Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.

  • Autre leçon :

    234 : Fonctions et espaces de fonctions Lebesgue-intégrables.

  • Développement choisi : (par le jury)

    Théorème de Weierstrass (par la convolution)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le jury est d'abord rapidement revenu sur mon développement. Il m'a notamment demandé de préciser les hypothèses pour utiliser la convolution de fonctions (Puisque on prend f continue à support compact et g une approximation de l'unité, tout se passe bien. Mais jusqu'où peut-on pousser le vice ?).
    Concernant le plan, le jury m'a demandé un contre-exemple de fonction dérivable et pourtant de classe non C1. J'ai commencé par proposer x*sin(1/x), le jury m'a fait prouver qu'elle n'était pas dérivable en 0 et j'ai donc modifier ma proposition en x^2 * sin(1/x). J'ai ensuite rapidement démontré que la dérivée n'était pas continue et ne pouvait pas être prolongée par continuité non-plus.
    Puisque tout l'argument de la fonction précédente tenait sur les problèmes en 0. L'un des jurys a voulu pousser un peu plus loin et m'a demandé de démontrer le résultat suivant : Si f est continue, dérivable dans un voisinage de a (mais pas forcément en a) et que f' admet une limite finie en a. Alors f est dérivable en a et f'(a) est la-dite limite. Ceci se fait par théorème des accroissements finis, on pouvait également effectuer une interversion de limite en revenant à la définition de la dérivée, mais le jury m'a demandé de ne pas utiliser cette option.
    Pour conclure, j'ai montré qu'une fonction continue dont le carré donne 1 est forcément constante (théorème des valeurs intermédiaire et un ou deux arguments assez naturels).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Très sympathique, l'un d'entre eux avait un sourire très apaisant. Ça fait très hippie d'écrire ça, mais les regarder dans les yeux aidait à évacuer le stress.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Voir mon commentaire sur la leçon 142.

  • Note obtenue :

    9.25

  • Sujet du texte choisi :

    Une équation type dérivée seconde par rapport au temps moins c^2 fois dérivée seconde par rapport au temps égale f

  • Sujet de l'autre texte :

    Pas de réponse fournie.

  • Un petit résumé du texte :

    beaucoup de Fourier dans le texte

  • Qu'avez vous produit durant la préparation ? (plan, code, dessins, preuves, ...)

    J'ai produit un programme Python autour de la méthode d'Euler appliquée à X=(u(0),...,u(n),u'(0),...,u'(n)) où u est une approche discrète de la solution. Mon programme fonctionnait, informatiquement parlant, avec illustration Matplotlib mais ne donnait pas le résultat escompté. Je n'ai pas du tout utilisé le texte en fait ni répondu à une seule question.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le jury, très constructif, m'a fait réfléchir sur les écart d'approximation générés par ma méthode, puis m'a orienté vers des questions plus générale, en me demandant à plusieurs reprises d'énoncer précisément des théorèmes utilisés (interversion limite/intégrale, Fourier..)

  • Suite à la présentation, qu'est ce qui vous semblait améliorable ? (plan, gestion du temps, choix des résultats présentés, ...)

    J'ai pu peu préparer cet oral, donc ce qui serait améliorable serait de simplement maîtriser mieux le programme.

  • Quelle a été l'attitude du jury (muet/aide/cassant) durant les questions ?

    très constructif : très carré, mais très aidant.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note

    Pas de réponse fournie.

  • Leçon choisie :

    204 : Connexité. Exemples et applications.

  • Autre leçon :

    229 : Fonctions monotones. Fonctions convexes. Exemples et applications.

  • Développement choisi : (par le jury)

    Composantes connexes des formes quadratiques réelles

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Sur le développement :
    Je n'étais pas très à l'aise pendant le développement, le stress m'empêchait sans doute d'être réellement convaincant.
    J'avais remplacé une inégalité large par une inégalité stricte, une jury m'a demandé de corriger. Ensuite un jury m'a demandé de montrer que ce que j'utilisais dans mon développement était bien une norme ; ce que j'ai du faire en entier malgré la facilité de la vérification. Je pense que c'est à cause de l'image peu assurée que j'ai donné pendant mon développement. J'ai ensuite dû donner la définition d'une forme quadratique.

    Sur le plan :
    - démontrer l'équivalence entre un E = O1 union O2 où O1 et O2 sont des ouverts disjoints et E = F1 union F2 où F1 et F2 sont des fermés disjoints
    - démontrer la caractérisation de la connexité par les fonctions à valeurs dans {0,1}
    - je n'avais pas écrit la condition de continuité dans le théorème des valeurs intermédiaires, j'ai du compléter l'énoncé
    - démontrer le théorème de Darboux : j'avais la démonstration dans mes notes, je leur ai dit, mais la prof qui m'a posé la question m'a demandé ce que je pouvais dire sans regarder ; j'ai donné les grandes lignes sans trop me convaincre, ça a eu l'air de lui suffire et on est passé à autre chose

    Exercice :
    Un seul exercice pour la fin, j'avais une fonction f : R^n -> R^n C1 telle qu'il existe un k >0 tel que pour tout x,y, ||x-y|| < k*||f(x)-f(y)||, et je devais montrer que c'était un C1-difféomorphisme.
    J'ai rapidement pensé au théorème d'inversion globale, j'ai donc dit que je voulais l'utiliser ; j'ai ensuite remarqué que l'hypothèse implique que f est injective ; pour montrer la surjectivité j'ai montré que l'image de f était un ouvert-fermé (fermé par caractérisation séquentielle, ouvert grace au théorème d'inversion locale) ; comme il ne restait pratiquement plus de temps, une des membres du jury m'a demandé les hypothèses du théorème d'inversion globale, et de justifier pourquoi il fallait bien montrer que f était bijective.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Souriant, assez peu aidant, je réfléchissais parfois un peu à voix haute, mais peu d'intervention de leur part ; que ça soit pour me dire que je disais des bêtises ou que je partais bien. Au final, je pense que ça m'a servi, étant donné que j'ai malgré cela pu répondre à toutes leurs questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    On a eu un peu moins de 3h de préparation ; quelques minutes de moins.

  • Note obtenue :

    16

  • Leçon choisie :

    103 : Exemples de sous-groupes distinguées et de groupes quotients. Applications.

  • Autre leçon :

    158 : Matrices symétriques réelles, matrices hermitiennes.

  • Développement choisi : (par le jury)

    Théorème de Lie-Kolchin

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Quelques questions sur le dév (Lie Kolchin) notamment sur le côté groupe topologique : pour quelle topologie. J'ai dû détailler pourquoi la topologie usuelle sur Mn(C) donne bien que Gln(C) est un groupe topologique. Ils m'ont demandé beaucoup de détails pour juste dire que le produit et l'inverse étaient continus.
    Apres je m'étais un peu planté dans la précipitation pour montrer que les sous groupes dérivés étaient bien connexes, donc ils m'ont demandé de redétailler ce point (conclusion : il faut vraiment relire son dev en entier avant de passer meme sur les points qu'on pense avoir bien en tete)

    Ensuite ils m'ont demandé de donner D(SLn(C)) pour n>=3.
    Ensuite j'ai du montrer que si G est un groupe de cardinal n non abélien, alors G/Z(G) ne peut pas etre cyclique.

    Ensuite on m'a demandé de montrer que dans ce cas la (ie G non abélien), n/4 <= Card(Z(G)) <= n/2, ce qui (je m'en suis rendu compte a froid) est faux (on a card(Z(G)) <= n/4 puisque G/Z ne peut pas etre d'ordre 2 ou 3 ce qui le rendrait cyclique). Puis que quand g et h sont des variables aléatoires uniformes sur les éléments du groupe : Proba(gh = hg) <= 5/8 mais l'oral s'est arrêté avant que je commence a trouver quelque chose.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury avait en moyenne une bonne attitude, ils me laissaient un peu de temps pour réfléchir et me filaient des tuyaux au bout de ce moment si je trouvais rien.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, finalement on a a peu pres eu nos 3h de préparation, pas de grosse surprise.

  • Note obtenue :

    17

  • Sujet du texte choisi :

    C87 - (Session 2019)

  • Sujet de l'autre texte :

    C42 ?

  • Un petit résumé du texte :

    On cherche à obtenir l'évolution asymptotique d'une population animale en modélisant les naissances et morts sur différents âges avec un modèle linéaire. Le texte pointe qu'à partir de certaines hypothèses (assez forte) on peut avoir une convergence prévisible.

  • Qu'avez vous produit durant la préparation ? (plan, code, dessins, preuves, ...)

    Plan et notes de l'oral que je comptais produire.
    Un peu de code pour illustrer mon propos. Principalement des calculs et graphiques pour montrer qu'on a une asymptote exponentielle à l'infini et qu'en dehors des hypothèses formulées en début de texte on obtient des résultats peu contrôlés.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le jury s'est montré très intéressé par les hypothèses du modèle et ce qu'elles impliquent sur les calculs, ce que provoque leur absence, etc. En partie parce que j'ai beaucoup appuyé sur le côté "hypothèses lourdes" pendant ma présentation. Il m'a également demandé la complexité pour calculer un certain vecteur (Le vecteur V* du texte, connaissance lambda et A). La complexité standard était O(n^3), car pivot de Gauss. Mais la matrice A étant très gentille, on peut en fait descendre en O(n).

  • Suite à la présentation, qu'est ce qui vous semblait améliorable ? (plan, gestion du temps, choix des résultats présentés, ...)

    Je m'en voulais un peu de m'être emmêlé les pinceaux dans certaines de mes démonstrations, par refus de recopier bêtement mes notes. Le jury est revenu sur la démonstration problématique pour me donner l'occasion de la refaire tranquillement.

  • Quelle a été l'attitude du jury (muet/aide/cassant) durant les questions ?

    Un jury très intéressé et vraiment souriant et sympathique.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Voir mon retour sur la leçon 152 pour un retour général.
    Pour cet oral précis, je ne m'attendais à un jury aussi entraînant.

  • Note obtenue :

    8.25

  • Leçon choisie :

    153 : Polynômes d’endomorphisme en dimension finie. Réduction d’un endomorphisme en dimension finie. Applications.

  • Autre leçon :

    181 : Barycentres dans un espace affine réel de dimension finie, convexité. Applications.

  • Développement choisi : (par le jury)

    Pas de réponse fournie.

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    J’ai proposé en développement un autre « même des noyaux » faisant intervenir le PPCM et le PGCD, ainsi que la dualité (cf Carnet de voyage et algébrie de Caldero-Perronier) et ils ont choisi celui là plutôt que Dunford (comme d’habitude Dunford ras le bol !!)

    Questions :
    - est ce que ce développement n'est valable que en dim finie ? Finalement non à priori
    - redéfinir l'application transposée
    - montrer que P(transposée de u) = transposée de P(u) si P est un polynôme : bon jusque là ...
    - Montrer que Ker(transposée de u) = Im(u) orthogonal (au sens du dual)
    - montrer que (A+B) orthogonal = A orthogonal inter B orthogonal (au sens du dual)
    Tout ça c’était sûrement pour vérifier que je connaissais bien le peu de difficulté de mon développement ..

    - Une application de mon développement plutôt difficile avec des anneaux du type K[X]/(PQ) et un morphisme de cet anneau dans K[X]/(P) x K[X]/(Q) qui a un polynôme associe sa classe modulo P et modulo Q.. on m'a demandé quelle structure avait le noyau de ce morphisme (c'est un ideal) puis on m'a demandé de la calculer et c'était (P) inter (Q) et après on a posé un endomorphisme bizarre pour utiliser mon développement mais c’est trop flou et j’avais vraiment du mal à comprendre ce qu’ils voulaient..

    - Donner un exemple de matrice 2x2 dont le polynôme caractéristique est pas scindé et donner sa décomposition de Dunford du type Semi simple + nilpotent : j'ai dit A =
    0 1
    -1 0
    sa décomposition est A = A + 0 puisque le polynôme minimal de A est X^2 + 1 qui est irréductible donc A est semi simple

    - Cest quoi les sous espaces stables de la matrice posée ? Alors on voit que c'est un endomorphisme cyclique donc y'a autant de sous espaces stables que de diviseurs unitaires du polynôme minimal c'est à dire un seul qui est E tout entier

    - Et une preuve plus numérique sans utiliser les endomorphismes cycliques ?
    Une droite peut pas être stable sinon il y aurait une valeur propre donc il n'y a que E tout entier

    - Soit F l'ensemble des endomorphismes cycliques de E : quelle est la topologie ? (Ouvert, fermé ?)
    J'ai rien su dire ducoup il m'a dit de montrer que c'est ouvert ..

    Donc on pose x dans E et fx la fonction qui a u associe le déterminant de la famille (u^i (x))

    Et l'union indexée par les x de E des images réciproques f^(-1)(C*) est un ouvert et c'est exactement l'ensemble des endomorphismes cycliques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas très souriant, parfois même en désaccord entre eux par rapport aux questions qu’on me posait.
    Cependant, pas cassant non plus, malgré tout ils ne m’ont pas non plus mis mal à l’aise !

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    RAS, temps de préparation correct, j’avais prévu 1h30 pour le plan et 1h20 pour les développements et les premières phrases de l’oral.
    L’accès aux malles est simple

  • Note obtenue :

    12.25

  • Leçon choisie :

    204 : Connexité. Exemples et applications.

  • Autre leçon :

    215 : Applications différentiables définies sur un ouvert de R^n. Exemples et applications.

  • Développement choisi : (par le jury)

    Pas de réponse fournie.

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Développements proposés :
    - Prolongement analytique et existence des points singuliers au bord du disque de convergence d’une série entière
    - GLn(C) est dense ouvert connexe de Mn(C)

    Ils ont choisi le premier.

    Questions :

    -prouver le corollaire du prolongement analytique qu’on utilise tout le temps, bon malheureusement j’ai eu du mal à cette première question bêtement ...

    - questions rapides sur le développement

    - Connaissez vous le développement en série entière de Tangente en 0 ? Non mais je connais les premiers termes et je sais que la formule générale fait intervenir les nombres de Bernoulli

    - vous pouvez majorer le rayon de convergence de la série entière en 0 de tangente ?
    Oui par pi/2 en voyant tan(z) = sin(z)/cos(z) et cos(z) s’annule pas dans le disque D(0,pi/2)

    - et on pourrait montrer que c’est égal à pi/2 ?
    Oui en fait la limite de tangente en pi/2 c’est l’infini donc en pi/2 c’est pas défini donc le rayon peut pas être strictement plus grand

    - vous avez dit que Gln(R) était non connexe, pouvez vous citer des espaces de matrices qui seraient connexes (hors Gln(C)) ?
    Oui SLn(C) est connexe par arcs ça se montre avec les transvections et je sais que SLn(R) est connexe mais je sais pas le montrer

    - Et On(R) ?
    C’est pas connexe parce qu’il a deux composantes connexes On+ et On-

    - Montrer alors que O2+ est connexe
    On va montrer connexe par arcs, déjà O2+ c’est des matrices de rotations et donc on va montrer qu’on peut relier chaque matrice à l’identité : il faut prendre theta*t au lieu de theta dans l’expression de la matrice et c’est ok le chemin convient

    - Ensuite ils m’ont fait retrouver un théorème pour avoir l’implication entre f’ = 0 et f est constante. D’abord ils m’ont fait poser f : [0,1] dans R une fonction quelconque dérivable sur I = [0,(1/2)[ U ](1/2),1] et telle que f’ = 0 sur I.
    J’ai dit une bourde en disant que je pensais que f était constante sur I mais en fait ils m’on invité à faire un dessin et j’ai vite corrigé mon erreur en prenant une fonction qui valait 1 sur [0,(1/2)[ et qui vaut -1 sur ](1/2),1] et qui vérifie les hypothèses alors qu’elle n’est pas constante.
    Ensuite ils m’ont donc demandé qu’est ce qu’il manque pour avoir f constante et j’ai dit il faut que I soit un intervalle ils ont eu l’air de dire oui et m’ont fait écrire l’énoncé du théorème.

    - Ils m’ont demandé de généraliser le résultat dans R^2 : j’ai donc dit que dérivable devenait différentiable, « f’ = 0 » devient « les dérivées partielles sont nulles » et « I intervalle » devient « I est connexe » et ça a l’air de les avoir convaincu

    - Ensuite j’avais mis le théorème des valeurs intermédiaires dans mon plan sans dire le nom et je l’avais cité pour un espace métrique quelconque, on m’a demandé ce que ça donnait dans R muni de la distance usuelle j’ai dit que c’était le TVI et ils ont dit oui (bizarre comme question surtout que c’était vers la fin)

    - Pour finir on m’a fait poser f : R dans R une fonction croissante et I un intervalle de R. J’ai du montrer que l’image réciproque de I par f était un intervalle.
    Ils m’ont suggéré de montrer que f^(-1)(I) était convexe, ce qui se fait bien car f est croissante.
    J’ai terminé là dessus

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Souriant, un des membres hochait souvent la tête, ce qui met en confiance.
    Il aidait quand il fallait.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Aucune surprise.

  • Note obtenue :

    13

  • Leçon choisie :

    203 : Utilisation de la notion de compacité.

  • Autre leçon :

    261 : Loi d’une variable aléatoire : caractérisations, exemples, applications.

  • Développement choisi : (par le jury)

    Théorème de Stone-Weierstrass

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Je croyais que le dev allait etre trop long du coup j'ai admis un lemme (qui exhibe une suite de polynome qui CVU vers la valeur absolue sur [-1,1]. Finalement j'ai fini en moins de 10 min donc je leur ai proposé de quand meme démontrer le lemme et ils avaient l'air ok.
    Ensuite j'ai eu quelques questions de précision sur le dév, et d'application de Stone Weierstrass (montrer que X compact => C(X) est séparable et une autre question dont je ne me souviens plus)

    Sur le plan, pas trop de question pénible, j'avais mis le thm de prolongement de Tietze (en application a SW) et on m'a demandé de démontrer du coup le lemme d'urysohn dans le cadre métrique (qui dit que si on a 2 compacts disjoints alors on trouve une fonction continue qui vaut 1 sur l'un et 0 sur l'autre).

    Ensuite j'ai du montrer que A = {(un) tq |un| < 1/2^n} était compact dans l^1(N)

    Ensuite j'ai du montrer que si K est un compact convexe d'un evn, et f tq ||f(x)-f(y)|| <= ||x-y|| alors f admettait un point fixe.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Sympathique

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    pas de surprise j'avais préparé cette lecon pendant l'année

  • Note obtenue :

    16

  • Sujet du texte choisi :

    C30 : Algebre linéaire, corps finis, groupes de permutations

  • Sujet de l'autre texte :

    Algèbre linéaire et géométrie

  • Un petit résumé du texte :

    On cherchait à sécuriser un échange entre deux individus Alice et Bob et pour cela on avait ne permutation connue de tous permettant de définir des fonctions de chiffrement et de déchiffrement, le texte évoluait et proposait au fur et à mesure des solutions réglant le problème que générait celle d'avant.
    Par exemple, la première méthode était toute bête, donc il n'y avait aucune sécurité. La deuxième était un poil plus complexe et faisait intervenir les matrices compagnons. Mais encore une fois la sécurité n'était pas optimale. La troisième indroduisait la notion de polynôme de permutation, et la sécurité était bien meilleure, cependant ça nécessitait un calcul de résultant de taille très grand de l'ordre de 2^n.
    Enfin la dernière partie du texte traitait une optimisation du cout et de la sécurité via les actions de groupes (je ne l'ai pas abordée)

  • Qu'avez vous produit durant la préparation ? (plan, code, dessins, preuves, ...)

    Un plan en trois parties expliquant le concept général puis les améliorations apportées ainsi que leurs faiblesses.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions :
    - Retour sur certains de mes programmes pour les détailler
    - vérifier que les fonctions chiffrement et déchiffrement que vous énoncez sont bien réciproques
    - Corriger votre erreur dans la preuve (j'avais juste écrit un ensemble privé de 0 alors qu'il fallait laisser 0 pour garder une structure d'espace vectoriel)
    - Comment on effectue le calcul d'un déterminant (J'avais énoncé le coût du calcul du résultant énoncé) ? Algorithme de Gauss
    - complexité de l'algorithme de Gauss et preuve ? De l'ordre de n^2 transvections qui coutent chacune n donc n^3
    - On peut toujours procéder comme ça ? Non il faut des pivots non nuls
    - Et donc par exemple pour une matrice compagnon ? On permute des lignes pour avoir un pivot non nul
    - Quelle influence sur le déterminant ? ça ne change rien au signe (-1) près
    - Comment procéder pour obtenir une relation de Bezout ? Euclide étendu
    - Écrire le principe de l'algorithme d'Euclide étendu
    - Dans le texte il était écrite que les X^t étaient des polynomes de permutation si t était premier avec 2^n - 1 (un polynome de permutation c'est un polynome qui pour tout x dans F2^n vérifiait P(x) = sigma(x) avec sigma une permutation) donc on m'a demandé de prouver ce point : Bézout puis injectif surjectif
    - Combien y'a t'il de polynomes de permutation de cette forme dans F256 ? Il faut calculer phi(255) ou phi est l'indicatrice d'euler, on trouve 128
    - De quel résultat provient le résultat utilisé pour votre calcul de phi(255) ? Theoreme chinois

  • Suite à la présentation, qu'est ce qui vous semblait améliorable ? (plan, gestion du temps, choix des résultats présentés, ...)

    J'ai carrément oublié après une partie de présenter un exemple que j'avais modélisé sur ordianteur. Donc pendant ma troisieme partie, je suis revenu sur un résultat de la deuxieme partie.. Bref à part ça je pense qu'une meillleure compréhension du texte m'aurait été très bénéfique mais j'ai donc préféré présenté une moitié de texte seulement mais relativement bien traitée..
    Si je devais changer quelque chose, je pense que je structurerais plus mes idées avant le passage devant le jury.

  • Quelle a été l'attitude du jury (muet/aide/cassant) durant les questions ?

    Une femme et trois hommes.
    La seule femme a dormi, ou du moins fermé les yeux pendant plus de 5 minutes, ce qui est relativement destabilisant surtout quand c'est elle qui gère le rétroprojecteur.
    Malgré tout elle a posé des questions à la fin !
    Un des 4 était totalement muet, et les 3 autres posaient des questions un peu tour à tour.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    RAS

  • Note obtenue :

    12.25

  • Leçon choisie :

    265 : Exemples d'études et d’applications de fonctions usuelles et spéciales.

  • Autre leçon :

    221 : Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.

  • Développement choisi : (par le jury)

    Formule des compléments

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le développement c'est bien passé, j'utilise dedans la théorie des fonctions holomorphes (théorème des résidus, prolongement analytique).

    - Le jury m'a alors demandé de définir ce qu'est une fonction holomorphe, j'ai manqué de précision, et ils attendaient celle avec le développement analytique.

    - Le jury m'a demandé des précisions sur mon développement, car j'avais mal énoncé la formule des compléments qui est valable sur C\Z et pas sur C\Z- comme je l'avais écrit.

    - Le jury m'a demandé de préciser le principe du prolongement analytique que j'utilisais. (Ne pas oublier la connexité), puis ils m'ont demandé de le prouver, j'ai donné les idées. À ce stade, j'ai eu l'impression que le jury n'était pas convaincu par mes réponses, car j'ai manqué de précision.

    - j'utilisais la convolution, il m'a été demandé de préciser comment je la définissais, et quand est-elle bien définie. J'ai d'abord dit qu'on l'écrivait pour les fonctions positives puis pour les fonctions L1, en passant par la valeur absolue. Le jury n'était pas convaincu, j'ai donc précisé ma définition en utilisant le théorème de Fubini.

    - Je parlais de détermination du logarithmique complexe sur C\R-, le jury m'a demandé ce qui changeait si je prenais une autre droite que R-. J'ai écrit la définition avec les arguments, ce qui n'a pas convaincu le jury, il m'ont donné l'exemple avec C\R+, j'ai alors dit que l'argument variait de 2pi quand on passait la droite R-, on est passé à autre chose.

    - Le jury m'a demandé à quoi servait la formule des compléments que j'avais démontré, notamment en ce qui concerne le sinus. J'ai parlé de produit Eulérien, ils m'ont demandé de deviner la formule avec la formule des compléments. J'ai essayer de partir de la formule d'Euler dans mon plan ce qui n'a pas fonctionné. Le jury m'a donné la série de terme général z/(n^2+z^2) pour n dans Z et z>0. Je n'ai pas compris pourquoi et le jury m'a ensuite donné la serie exp(-n^2z). J'ai dit que je pensais à la formule sommatoire de poisson, mais que je ne me souvenais pas de l'identité. On est passé à autre chose.

    Pour terminer, le jury m'a donné un exercice:
    Soit t --> P(t) continue, des matrices de taille n stochastiques vérifiant:
    P(s+t)=P(s)P(t)
    P(0)=Identité
    P est dérivable à gauche en 0
    La question était: que pouvez vous dire de ce système. Après un moment de réflexion, le jury m'a demandé de démontrer que t --> P(t) est dérivable en tout t. J'ai montré qu'elle l'était à gauche, puis avec un peu d'aide, à droite. Le jury m'a reposé la question du début, l'oral c'est terminé là dessus.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Je connaissais assez bien les démonstrations internes à mon plan, mais pas assez ce qu'il y avait autour par manque de temps pour préparer cette leçon pendant l'année, je ne m'attendais pas à des questions aussi difficiles, mais c'est ce que mon plan amenait à faire. Je n'ai pas été assez convainquant et j'ai finalement répondu correctement à très peu de questions.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    155 : Endomorphismes diagonalisables en dimension finie.

  • Autre leçon :

    171 : Formes quadratiques réelles. Coniques. Exemples et applications.

  • Développement choisi : (par le jury)

    Réduction des endomorphismes normaux

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    - J'ai commencé mon plan en disant que les matrices diagonales sont faciles à inverser et pratiques pour les calculs. Le jury m'a fait remarquer qu'il est plutôt rare de diagonaliser une matrice pour l'inverser.

    - Le développement c'est bien déroulé, le jury n'avait pas de question dessus.

    - Le jury m'a demandé comment s'appelle une matrice de la forme
    (a -b)
    (b a)
    Et à quoi cela correspond géométriquement.

    - Ensuite j'ai du montrer que si M est diagonalisable alors tout espace stable par M admet un supplémentaire stable. Je suis bien parti mais j'ai mis quelques minutes avant de pouvoir conclure.

    - Le jury a demandé de montrer que tr(AtA)=0 implique A=0 (que j'utilisais dans mon développement). J'ai dit que ça provenait d'un produit scalaire, et j'ai du le démontrer. On m'a demandé comment s'appelait ce produit scalaire (Dit de Frobenuis).

    - On m'a demandé la décomposition de Dunford de exp(M) connaissant celle de M puis de montrer que M diagonalisable SSI exp(M) l'est, et enfin la CNS pour que exp(M)=I (tout ceci était dans mon plan).

    - Le jury m'a demandé de montrer que l'adhérence de Dn(R) ne valait pas Mn(R). J'ai d'abord trouvé une matrice non trigonalisable sur R (car j'avais dans mon plan l'adhérence de Dn(R) qui vaut Tn(R) ). Le jury a alors demandé de montrer directement le résultat sans utiliser mon plan. (Penser au discriminant).

    - Comme j'avais fait une partie topologique, le jury a demandé de donner une caractéristique topologique sur la classe de conjugaison de M lorsque M est diagonalisable. J'avais déjà vu ce résultat mais j'ai eu un peu de mal à retrouver la preuve. Le Jury m'a aidé, et j'ai finalement réussi.

    - Pour finir, le Jury m'a demandé comment je ferais concrètement pour diagonaliser M symétrique. J'ai dit qu'il fallait calculer le polynôme caractéristique, mais le jury a reformuler la question en suggérant que la matrice M est de taille 100. J'ai dit qu'il fallait trouver les valeurs propres de M. Qu'on pouvait les approximer par méthode itérative. J'ai énoncé le nom de la méthode de la puissance pour calculer la plus grande valeur propre de M après un peu d'aide. Le jury a dit oui et m'a demandé comment conclure. J'ai dit qu'il fallait résoudre un système linéaire AX=cX et le jury a demandé comment on conclut ensuite, par récurrence en calculant l'orthogonal de X. L'oral c'est terminé ici.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Le jury a posé des questions relativement proches du plan.

  • Note obtenue :

    Pas de réponse fournie.

  • Sujet du texte choisi :

    Le thème était le suivant:
    Un marcheur se déplace en terrain inconnu et cherche des récompenses. Le but et de maximiser son gain.

  • Sujet de l'autre texte :

    Méthode de monte-carlo

  • Un petit résumé du texte :

    On se place sur une grille (N*)^2 et on regarde l'ensemble des chemins qui ont des mouvements soit vers le haut soit vers la droite. Les récompenses sont présentes sur chaque (i,j) et sont modélisées par des v.a géométriques iid de paramètre q.

  • Qu'avez vous produit durant la préparation ? (plan, code, dessins, preuves, ...)

    J'ai simulé une convergence p.s
    J'ai également montré un théorème du texte par simulation (une convergence, où l'on devait d'abord approximer une espérance)

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le jury a posé des questions très proches du texte et de ce que j'avais produit.

    -La première question m'a beaucoup déstabilisé, j'avais en effet parlé d'une application que le texte donnait, en signalant que je n'avais pas bien compris une formule. Le jury m'a alors demandé de la démonter. Au bout de quelques longues minutes, j'ai fini par comprendre l'idée sans être réellement convaincu. Dans cette situation, penser toujours à regarder des cas simples.

    - J'avais énoncé quelques résultats statistiques lors de ma présentation, le jury est revenu dessus, cela me posait moins de problème.

    - Le jury m'a demandé combien il y avait de chemins du type haut/droite qui relient (1,1) à (n,m). Après une proposition erronée, le jury m'a guidé et j'ai trouvé la réponse. (Penser à regarder un chemin comme une suite de 1 et de 0 où 1 signifie haut et 0 signifie droite, il suffit ensuite de compter le nombre de façon de placer n-montées parmi les n+m pas)

    - Pour terminer, le jury a demandé de manière imprécise que peut-on dire de la convergence de la fonction de répartition empirique, j'ai parlé de convergence uniforme. Ils m'ont demandé à quoi cela servait, j'ai parlé du test de Kolmogorov Smirnov, test d'adéquation à une loi ou une famille de loi. L'oral c'est terminé ici.

  • Suite à la présentation, qu'est ce qui vous semblait améliorable ? (plan, gestion du temps, choix des résultats présentés, ...)

    Je n'aurais pas dû parlé de ce que je ne maîtrisais pas dans le texte. Mais comme il me restait un peu de temps, j'ai voulu le combler.

    J'ai trouvé que le texte était diviser en 2, une partie assez élémentaire et une partie extrêmement compliquée, c'était donc difficile de proposer quelque chose d'intéressant... Je suis partie dans les stats car j'aime bien cela, j'ai en fait suivi les suggestions proposées à la fin du texte.

  • Quelle a été l'attitude du jury (muet/aide/cassant) durant les questions ?

    Le jury me laissait chercher longtemps au début, mais était plus aidant vers la fin.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    150 : Exemples d’actions de groupes sur les espaces de matrices.

  • Autre leçon :

    182 : Applications des nombres complexes à la géométrie.

  • Développement choisi : (par le jury)

    Loi de réciprocité quadratique (via les formes quadratiques)

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le développement s'est bien passé, j'ai pris exactement 15 minutes.

    Questions sur le développement : où interviens précisément le fait que p est premier impair ? Rappeler la formule qui lie le cardinal du groupe et le cardinal des orbites. Comment démontre-t-on cette formule ?

    Questions sur le plan :
    Avec Frobenius vous dites qu'on peut montrer que si deux matrices sont semblables dans un sur-corps alors elles sont semblables. Frobenius c'est un peu compliqué, vous savez comment on peut le démontrer dans le cas particulier où les corps sont R et C ? Là je dis oui et je fais la démo avec le déterminant.
    - Est ce qu'on peut généraliser cette méthode ?
    - Oui pour une extension finie.
    - Seulement finie ?
    - On s'y ramène on considérant le corps engendré par les coefficients de la matrice.
    - Ok très bien mais ça marcherait pas dans quel cas ?
    - Euhhhh je sais pas ... J'ai l'impression que ça marche tout le temps ...
    - Regardez bien votre démonstration avec le déterminant !
    - Ah oui ça marcherait pas sur des corps finis.
    - C'est ça ; pour les corps finis on a besoin de Frobenius.

    D'ailleurs en parlant de Frobenius, comment vous montrez votre lemme truc (c'est le lemme qu'on a besoin pour montrer Frobenius qui dit qu'il existe un polynôme annulateur ponctuel en x exactement égal au polynôme annulateur). Je commence à le démontrer, après deux trois lignes il me dit "ok c'est bien, je vais vous proposer une autre méthode"). Il me fait faire une autre démo que je connaissais aussi avec des réunions de noyaux, mais je lui ai fait remarqué à la fin que ça marchait pas sur les corps finis (une nouvelle fois lol).

    Comment vous montrez que deux endomorphismes diagonalisables qui commutent sont co-diagonalisables ?
    - Alors il y a deux preuves, une un peu chiante où on montre que les sous espaces propres de l'un sont stables par l'autre et on montre que la restriction à un espace stable d'un endomorphisme diagonalisable reste diagonalisable ... (il me coupe)
    - Et ça se démontre comment ? (je réponds il me dit ok)
    - Mais moi je préfère la démo où on fait une récurrence sur la dimension de l'espace car on a pas besoin de démontrer ces deux propriétés.
    - Montrez moi.
    - (Je fais la démo ... ) Ah ouais, en fait on a besoin de montrer les mêmes propriétés ....
    - Oui ...
    - Bon au moins la récurrence permet de démontrer le résultat pour un nombre quelconque d'endomorphismes.
    - C'est vrai.

    On va passer aux exercices : Quel est le stabilisateur de l'identité pour l'action de congruence ? (j'ai pas compris l'intérêt de la question, la personne qui m'a posé la question m'a dit ok quand j'ai donné la réponse mais à mon avis elle s'est trompée dans son énoncé d'exercice car là il n'y avait vraiment rien à faire ...)

    Ensuite lors des dix dernières minutes on m'a donné un gros exercice en me guidant avec des questions : montrer que tout sous algèbre des matrices complexes telle que tous ses éléments sont diagonalisables est commutative. C'était assez laborieux, il y avait une récurrence à faire pour avoir une expression avec des nilpotentes et des trucs dont je me souviens plus.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury est très sympathique, il fait remarquer gentiment quand on dit des bêtises ou quand on oublie une hypothèse.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    On a un peu moins de trois heures pour préparer. Sinon RAS.

  • Note obtenue :

    15

  • Leçon choisie :

    260 : Espérance, variance et moments d’une variable aléatoire.

  • Autre leçon :

    224 : Exemples de développements asymptotiques de suites et de fonctions.

  • Développement choisi : (par le jury)

    Théorème de Lévy et TCL

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    J'ai un peu galéré sur le développement, j'arrivais pas à démontrer mon lemme qui prenait 1/3 du développement, du coup je l'ai passé. J'ai terminé en un peu moins de 16 mins.

    Questions sur le développement : Vous utilisez un résultat de densité sur les transformées de Fourier ; pouvez vous nous rappeler quel ensemble est dense dans quel ensemble et pour quelle norme ? Vous utilisez le théorème de convergence dominée, vous pouvez nous rappeler les hypothèses ? Comment vous montrez que votre limite est bien exp(-x^2/2) ? J'avais fait une petite erreur de calcul à la fin mais heureusement, ma petite erreur était multipliée par 0 donc je trouvais la bon résultat.

    Question sur le plan : Vous dites que l'espérance est linéaire, qu'en est-il de la variance ?
    - La variance de la somme est la somme des variances si les variables sont indépendantes.
    - La réciproque est-elle vraie ?
    - Non.
    - Vous avez un exemple ?
    - Je suis sûr que c'est faux mais j'ai pas de contre exemple ....
    - D'accord, que se passe-t-il si les variables ne sont pas indépendantes ?
    - Il y a un terme de covariance qui apparaît.
    - Comment on définit la covariance ?
    - 2cov(X,Y) = Var(X+Y) - Var(X) - Var(Y)
    - Mouais, j'aime pas trop cette définition.
    - Sinon on peut dire Cov(X,Y) = E(XY) - E(X)E(Y).
    - Et comment vous définissez E(XY) ?
    - Bah intégrale sur oméga de XY dP ....
    - Oui, ok.

    Vous dites que si deux variables aléatoires sont indépendantes alors la fonction caractéristique de la somme est le produits des fonctions caractéristiques, est ce que la réciproque est vraie ?
    - Euh je sais pas .... Comme ça je dirais que c'est faux un peu comme la variance....
    - Ok, en fait c'est vrai.

    Passons aux exercices :
    I) Calculer les moments à tout ordre d'une loi de poisson. Je commence à faire une IPP pour trouver une relation de récurrence, une personne du jury me dit que je devrais vérifier avant que les moments existent. Je trouve la relation rapidement et j'en déduis une formule pour les moments.

    II) Soient X1,...,Xn de loi uniforme sur [0,1], calculer les moments de min(X1,...,Xn). Je trouve toute suite comment on fait, il m'arrête à la fin quand il a vu que j'ai compris. Vous pouvez me rappeler les hypothèses sur la fonction de répartition pour avoir une densité ?

    III) Démontrer la loi forte des grands nombres pour la convergence L2. Je vois que l'espérance de la suite est constante donc j'essaye de regarder si c'est une martingale. Une personne du jury me dit "pourquoi pas" mais au final ça marche pas. Du coup je veux utiliser Minkowski mais il m'arrête pour me dire d'utiliser un truc dont a parlé, et je m'en sors avec les fameuses covariances.

    IV) Je me souviens plus trop de l'énoncé, on m'a donné la loi conditionnelle d'une variable aléatoire par rapport à une autre et je devais en déduire l'espérance. J'ai calculé l'espérance conditionnelle et j'en ai déduis l'espérance.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Assez gentils, j'avais peur qu'ils me parlent du petit lemme que j'ai pas réussi à démontrer mais ils ont rien dit.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Un peu moins de 3 heures de préparation.

  • Note obtenue :

    16

  • Leçon choisie :

    234 : Fonctions et espaces de fonctions Lebesgue-intégrables.

  • Autre leçon :

    243 : Convergence des séries entières, propriétés de la somme. Exemples et applications.

  • Développement choisi : (par le jury)

    Sommation d'Abel des séries de Fourier

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    J'ai d'abord justifié mon plan de leçon qui était plutôt orienté vers les applications de la théorie de Lebesgue, en particulier en analyse de Fourier.
    Le jury est d'abord revenu sur mon développement. J'avais introduit le noyau de Poisson et j'avais justifié sa positivité en faisant un calcul de discriminant. Le jury m'a alors demandé d'écrire le noyau sous une autre forme (avec des modules) et la positivité était immédiate.
    Le jury m'a demandé de justifier l'existence du produit de convolution de deux fonctions intégrables. Ensuite de justifier que L1 n'avait pas d'élément neutre pour la convolution. Je l'ai fait par l'absurde en passant en Fourier et en utilisant le lemme de Riemann-Lebesgue pour obtenir une contradiction. J'ai au passage raconté une bêtise en disant que si le produit de deux fonctions est nul alors l'une des deux fonctions est identiquement nulle. Le jury m'a dit en êtes vous sûr et là on comprend tout de suite que quelque chose cloche, j'ai dit non et bien sûr ils m'ont demandé un contre exemple en faisant un dessin. Le mot dessin m'a beaucoup aidé et j'ai proposé le produit de deux indicatrices dont les intervalles sont disjoints. Le jury m'a ensuite précisé que ma démonstration par l'absurde était trop rapide car il fallait utiliser une fonction dont la transformée de Fourier était non nulle. J'ai alors proposé la fonction exp de -ax^2 avec a>0 dont je connaissais la transformée de Fourier (une exponentielle aussi). Le jury m'a ensuite demandé si je savais démontrer le lemme de Riemann-Lebesgue j'ai répondu qu'on le démontre sur l'espace C^1_c par IPP et ensuite par densité. Ils m'ont demandé la partie densité ce que j'ai fait. Il y a eu aussi une question sur le principe de ma démonstration de la complétude des espaces de Bergman ( mon deuxième développement proposé), j'ai donné les grandes lignes et l'oral s'est terminé ainsi.
    Il y avait deux autres questions sur mon développement une qui parlait de densité des polynômes trigonométriques et j'ai eu beaucoup de mal à répondre à cette question malgré l'aide du jury. Une autre sur la partie de ma démonstration du théorème d'approximation de l'unité où j'avais choisi un delta trop grand pour que f(x-t) soit bien définie avec x dans [-pi,pi]...
    J'avais oublié : on m'a donné un petit exercice : calculer la limite quand n tend vers +l'infini de l'intégrale entre 1 et + l'infini de exp(-t^n).
    J'ai utilisé le théorème de convergence dominée. J'ai eu un peu de mal sur l'hypothèse de domination et le jury m'a aidé à surmonter cette difficulté. Ensuite on m'a demandé le lien entre convergence L1 et convergence pp j'ai dit si une suite converge en norme L1 alors il y a convergence pp pour une suite extraite. On m'a alors demandé un contre exemple. j'avais pas eu le temps de réviser cette partie pendant la préparation et j'ai du réfléchir pendant pas mal de temps. J'ai proposé une indicatrice sur un intervalle du type ]1/2^(k+1);1/2^k[, le jury m'a guidé pour améliorer ma réponse. Le jury m'a ensuite demandé le lien entre convergence uniforme et convergence L1, j'ai dit la convergence uniforme implique la convergence L1 si l'espace est de masse totale finie.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était très agréable. ils m'ont posé beaucoup de questions. Ils m'ont très bien guidé pour que j'arrive à répondre à leur questions. Je suis sorti de l'oral en ayant appris des choses !
    On peut lire le nom de chaque membre du jury et j'ai un peu stressé quand j'ai vu le nom d'É. Matheron, ses questions était techniques d'ailleurs mais très pertinentes je trouve...

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    La préparation dure un peu moins de 3 heures donc attention à finir le plan en 2h45min grand max.
    J'ai fini mon développement sur la sommation des séries d'Abel en 9 minutes. J'ai alors proposé de démontrer le théorème d'approximation de l'unité du moins le principe.
    Le jury n'a posé aucune question sur les inégalités de Hölder ou de Minkowski qui étaient dans mon plan, dommage car je les avais bien préparées...

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.

  • Autre leçon :

    215 : Applications différentiables définies sur un ouvert de R^n. Exemples et applications.

  • Développement choisi : (par le jury)

    Expression des zeta(2k)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    - J'ai eu des questions sur le développement (tracer la fonction phi, énoncé le théorème de Dirichlet et une discussion sur les fonctions continues par morceaux). J'ai eu un peu de mal sur la fin donc ils sont passés à autre chose.
    - Donner un équivalent du reste de la série de Riemann (grâce au théorème comparaison séries/intégrales).
    - La preuve du critère de Cauchy. J'avais un peu de mal aux questions précédentes donc ils m'ont posé une question un peu plus facile.
    - La preuve de l'équivalent de la série harmonique. Je ne l'avais pas préparé, le jury m'a guidé et j'étais assez réactive à leurs indications.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury n'était pas du tout méchant, il essayait vraiment de m'aider.
    J'ai assisté à un oral la veille, et le jury adapte les questions selon le niveau du candidat.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    3h c'est très court pour préparer la leçon, on a pas le temps de faire un plan trop ambitieux...
    Il faut vraiment bien connaitre ses développements, pour ne pas perdre du temps.
    Le but est de vérifier qu'on maitrise les bases.

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    260 : Espérance, variance et moments d’une variable aléatoire.

  • Développement choisi : (par le jury)

    [Lemme de Zolotarev : doublon avec Frobenius Zolotarev]

  • Autre(s) développement(s) proposé(s) :
  • Liste des références utilisées pour le plan :
  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Sur le développement :
    Q: Comment vous calculez la signature d'une permutation je comprends pas bien ce que vous avez écrit.
    Q: Précisez quelques notations.

    Sur le plan :
    Q: Sur les polynômes symétriques : on prend P = X^3 - 3X + 2, est-ce que vous pouvez calculer la somme des carrés de ses racines ?
    J'ai bien galéré, il faut regarder un polynôme symétrique avec trois indéterminées et essayer de calculer les sommes des racines pour se ramener au théorème sur les polynômes symétriques je crois.

    Q: Le centre de S_n ?
    R: On regarde les générateurs et on essaye de comprendre ce qu'il se passe en conjugant...

    Q: Qu'est ce que vous pouvez dire sur une permutation qui est un carré ?
    R: On peut donner un théorème de structure apparemment mais franchement je commençais à avoir du mal.

    Q: Si on a un groupe d'ordre p, et qu'on peut l'injecter dans S_n, que dire de n par rapport à p ?
    R: p >= n

    Q: Même question pour p^\alpha
    R: C'est toujours vrai mais un peu plus difficile à chopper (j'ai pas réussi)

    Q: Sur le théorème de Cayley, à quoi ça ressemble les sous-groupes de S_n isomorphes à G de cardinal n ?
    R: euh....
    Q: Et si on regarde pour n=6 par exemple ?
    R: euh....
    et globalement j'ai galéré gentiment jusqu'à la fin de l'oral là dessus.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury vraiment très sympa, c'est assez perturbant de passer du coq à l'âne comme ça d'une question à l'autre, ils hésitent vraiment pas à s'arrêter à un moment quand ils en ont marre de te voir galérer sur une question ou qu'ils estiment que t'as donné assez d'éléments de réponse.

    Ils donnent pas mal de pistes, si bien que quand tu prends 10s pour réfléchir tu te sens mal d'interrompre un peu le dialogue tellement l'oral ressemble à une discussion !

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Franchement top, l'organisation du concours est tellement rôdée, c'est assez impressionnant à voir, rien que pour ça ça vaut le coup d'y aller ! C'est assez intéressant d'avoir vraiment réfléchi aux leçons avant, comme ça entre le moment où tu tire le sujet et le moment où tu vas te poser dans la salle, tu peux commencer à réfléchir à ce que tu vas faire, les bouquins que tu vas utiliser, tout ça.

    Et comme annoncé : faites vraiment pas les cons quand vous écrivez des trucs dans vos plans, faut vraiment savoir ce que ça veut dire parce que le jury sait aller chercher là où ça fait mal, et je suppose que c'est souvent sur les mêmes points pour une leçon donnée donc ils mettent pas longtemps à trouver ! En préparant je me suis dit allez on met les polynômes symétriques et bingo j'ai eu une question là dessus direct !

  • Note obtenue :

    10.25

  • Leçon choisie :

    144 : Racines d’un polynôme. Fonctions symétriques élémentaires. Exemples et applications.

  • Autre leçon :

    150 : Exemples d’actions de groupes sur les espaces de matrices.

  • Développement choisi : (par le jury)

    Théorème de d'Alembert-Gauss par la compacité [no pdf]

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Développement: On m'a demandé de justifier l'initialisation d'une récurrence et pourquoi fermé + borné => compact en dim finie

    Plan : Je n'avais pas top insisté dans mon plan sur la partie "fonctions symétriques élémentaires" donc ils ont fait un gros focus dessus durant l'entretien.
    Questions :
    - pourquoi parle-t-on de fonctions "symétriques"?
    - résolution d'un système avec 3 inconnus où il fallait utiliser les fonctions symétriques élémentaires (sans me le dire évidemment ;) )
    - trouver les racines d'un polynôme de degré 3 sans racine évidente
    - f endomorphisme de E, un R-ev, tel que f²=Id. Montrer que E est de dim paire

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Très souriants dès le début, très encourageant et bienveillants tout du long.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Préparation : le président du jury est présent et très rassurant lors de notre premier tirage, la salle des tirages est séparée de la salle de préparation, personne ne vérifie si nos livres sont annotés, on se ballade comme on veut dans les couloirs à la recherche des livres qu'on veut (et il y en a beaucoup !!)
    Jury : on nous prend nos leçons et tous nos brouillons à la fin de l'épreuve pour les jeter

  • Note obtenue :

    Pas de réponse fournie.

  • Leçon choisie :

    924 : Théories et modèles en logique du premier ordre. Exemples.

  • Autre leçon :

    927 : Exemples de preuve d’algorithme : correction, terminaisons.

  • Développement choisi : (par le jury)

    Théorie des ordres denses

  • Autre(s) développement(s) proposé(s) :
  • Liste des références utilisées pour le plan :
  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Il y a eu un long moment de questions sur le développement, où je comprenais pas vraiment où iels voulaient en venir... En fait iels me demandaient juste de dire un truc évident mais je suppose que ça me paraissait tellement clair que j'ai mis 10 minutes à le dire...

    J'ai eu pas mal de questions du type : "est-ce qu vous connaissez une autre théorie qui admet l'élimination des quantificateurs/je me souviens plus trop les autres", et à chaque fois j'ai dû répondre non parce que j'en savais clairement rien...

    Qu'est-ce qu'il se passe si on met "modèles finis" à la place de "modèles" dans le titre de la leçon ? Qu'est ce que cela change ?

    Une question sur la décidabilité : qu'est ce que ça veut dire in/décidable, et comment on peut le prouver ?

    J'ai aussi eu une question sur mon autre développement, en gros d'expliquer en deux mots comment on fait la preuve.

    Retour au développement, si on change les égalités et inégalités en rajoutant des trucs de la forme $x=y+c$ et $x

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était vraiment adorable, moi j'étais un peu en panique et vraiment extrêmement fatigué, du coup j'avais vraiment du mal à réfléchir, mais iels cherchaient tellement pas à me piéger qu'iels m'ont répété plusieurs fois que c'était pas du tout une question piège, c'était juste "pour s'assurer de notre compréhension commune de ce que je disais".

    Iels étaient assez vite à court de questions, je suppose que c'est parce que j'étais pas hyper à l'aise sur cette leçon donc iels osaient pas trop poser des questions trop difficiles (et je les en remercie !) mais du coup fallait se creuser la tête pour savoir de quoi on pouvait parler...

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Comme le premier jour, la préparation se passe comme sur des roulettes, le surveillant s'est même assuré qu'on avait toustes de l'eau et que ça allait ! Tout le monde te lâche des gros sourires dans les couloirs, ce qui est vraiment agréable quand tu sais que tu es en train de paniquer sur un de tes trois oraux.

    Sinon, le jury creuse creuse creuse vraiment jusqu'au fond des choses, ce qui, même en s'étant préparé au cours de l'année, est beaucoup plus intense qu'en oral blanc par exemple.

  • Note obtenue :

    15

  • Leçon choisie :

    121 : Nombres premiers. Applications.

  • Autre leçon :

    107 : Représentations et caractères d’un groupe fini sur un C-espace vectoriel. Exemples.

  • Développement choisi : (par le jury)

    Loi de réciprocité quadratique (via les formes quadratiques)

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    J'ai fait des erreurs de notation dans mon développement et dans mon plan, notamment un problème de définition du symbole de Legendre ; on a passé un certain temps - 10/15 minutes je dirais - à remettre tout ça en ordre. POur ce qui est des questions, je me souviens de celles-ci :
    - Expliquer rapidement la démonstration de la classification des formes quadratiques sur un corps fini
    - 15 est-il un carré modulo 37 ? (et montrer que le symbole de Legendre est multiplicatif)
    - Donner une application du théorème de Cauchy sur les groupes : je n'en avais pas, j'ai fais quelques remarques sur le résultat (notamment dit que c'était une réciproque partielle du théorème de Legendre) ; on m'a demandé d'expliquer pourquoi dans un groupe abélien fini le produit de 2 éléments dont les ordres sont premiers entre eux est un élément d'ordre le produit des ordres, avec un contre-exemple dans le cas non abélien
    - A la fin : s'inspirer de la démonstration du théorème des 2 carrés pour trouver les nombres premiers irréductibles dans Z[sqrt(d)] ; après quelques remarques et indications, le temps était écoulé.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury globalement souriant, plutôt vers la fin qu'au début je dirais, mais jamais désagréable.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    C'était le 1er jour de canicule, j'ai dû aller me mettre de l'eau sur le visage plusieurs fois pour ne pas avoir trop chaud ; il faut bien penser à boire et à manger pendant la préparation (on oublie facilement dans ces circonstances) pour éviter de se sentir faible devant le jury

  • Note obtenue :

    17.75

  • Leçon choisie :

    106 : Groupe linéaire d’un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.

  • Autre leçon :

    121 : Nombres premiers. Applications.

  • Développement choisi : (par le jury)

    Décomposition polaire

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Je pense avoir fait un plan riche que je ma^trisais bien, et les questions ont
    principalement tourne autour, ce qui fait que je m'en suis bien sorti. La seule
    question qui ne ressemblait a rien de ce que j'avais deja vu je n'ai pas reussi a
    y repondre!
    Dans mon plan je parle de generateurs de Gl(E), O(E)...etc avec des appli-
    cations a la structure de ces groupes, je reduis les matrices orthogonales et
    unitaires et les deux parties que je prefere et sur lesquelles j'aimerais ^etre inter-
    roge sont le denombrement sur les corps nis gr^ace a des actions de Gln(Fq) et
    les representations de groupe.
    Je propose en developpements la surjectivite de l'exponentielle matricielle com-
    plexe via Dunford que je montre dans le dev, et la decomposition polaire dans
    Gln(R)+ application a unitairement semblables implique orthogonalement sem-
    blables (pour deux matrices reelles)+ application a la reduction des matrices
    orthogonales en partant de celle des unitaires.
    Ils choisissent le deuxieme dev, je le fais dans le temps imparti, rien de special
    a dire (la montre electrique au poignet pour se chronometrer aide bien).
    Les questions:
    Jury: dans votre dev vous utilisez l'existence et l'unicite d'une racine symetrique
    de nie positive, comment montreriez-vous ce resultat?
    Moi: pour l'existence on fait comme ca (je commence a detailler l'unicite au
    tableau).
    Jury: ok, nissez d'expliquer a l'oral (je le fais).En quoi votre dev est pertinent
    par rapport a la lecon?
    Moi: deja on montre et on utilise la decomposition polaire qui nous dit que
    quand on restreint l'action par translation a gauche de Gln(R) sur lui-m^eme a
    On(R), chaque orbite contient une unique matrice de nie positive.Et aussi...
    Jury:ok c'est ce que je voulais entendre.Soient a et b des reels tels que a2+b2 6= 0
    et A =
    a

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pas de réponse fournie.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    19

  • Leçon choisie :

    107 : Représentations et caractères d’un groupe fini sur un C-espace vectoriel. Exemples.

  • Autre leçon :

    155 : Endomorphismes diagonalisables en dimension finie.

  • Développement choisi : (par le jury)

    Table de caractères des groupes non abéliens d'ordre 8

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Sur le développement :
    On m'a demandé de détailler pour quelle raison un groupe $G$ dont le quotient par le centre est cyclique, est nécessairement abélien.

    Sur le plan :
    Commentaires sur la table de caractères de $\mathbb Z/n\mathbb Z$. Ils attendaient que je dise qu'il s'agit d'une matrice de Vandermonde. Je n'ai pas su l'interpréter cependant, mais nous sommes passés à autre chose.
    Démontrer que le groupe dual de $\mathfrak{S}_n$ est d'ordre $2$ (ie on ne trouve que la signature et le caractère trivial) pour $n\geq 2$.
    Expliquer l'identité $\mathcal L(E,F)^G = \operatorname{Hom}_G(E,F)$.
    Comment démontrer qu'une représentation est irréductible ? (On calcule la norme du caractère associé) Illustrer ce principe avec la représentation standard de $\mathfrak{S}_5$.
    Peut-on lire des informations sur la table de caractère d'un groupe ? (Oui, on peut repérer les sous-groupes distingués. On ne m'a pas demandé de preuve mais juste d'expliquer, et d'illustrer sur un exemple)
    Commentaires sur le théorème de Maschke : comment marche-t-il ? Est-il encore vrai dans d'autres contextes (ie on quitte $\mathbb C$).

    Pas d'exercice à proprement parler.

    Sur les cinq dernières minutes, on est partis en terre inconnue sur ce qu'on pourrait dire de représentations de groupes infinis. On m'a demandé de donner des exemples de représentations de $SO_2(\mathbb R)$ (abélien, on s'attend à ce que les irréductibles soient de degré $1$) et de $SO_3(\mathbb R)$. C'était des questions assez informelles sur la toute fin.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury très agréable et souriant. J'ai été surpris par les questions qui m'ont été posées: toutes portaient sur le plan, aucun exercice, et des questions assez ouvertes. On m'a plus souvent demandé si je connaissais un résultat plutôt que si j'en connaissais la preuve.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    20

  • Leçon choisie :

    215 : Applications différentiables définies sur un ouvert de R^n. Exemples et applications.

  • Autre leçon :

    253 : Utilisation de la notion de convexité en analyse.

  • Développement choisi : (par le jury)

    Point de Fermat d'un triangle

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Sur le développement:
    Résumer à l'oral les différentes étapes de la preuve.
    Justifier que l'application qui à un point $M$ du plan euclidien associe sa distance $OM$ à l'origine n'est effectivement pas différentiable en l'origine. (Il n'y a pas de dérivées partielles en ce point)
    Justifier que le point $P$ qui réalise le minimum se trouve effectivement à l'intérieur du triangle, et est différent des sommets (choses que j'ai admises lors de la preuve).

    Sur le plan :
    Exemple de fonction qui a des dérivées directionnelles mais qui n'est pas différentiable.

    Exercices:

    Exercice du même type que celui dans Rouvière où il s'agit de prouver l'unicité d'un solution $(x,y)$ d'un système non linéaire mettant en jeu des fonctions trigonométriques. On traduit cela comme un problème de point fixe d'une fonction et on montre que sa différentielle est de norme $<1$ (pour une bonne norme). L'inégalité de la moyenne permet alors de conclure.

    Soit $f:\mathbb R^n \rightarrow \mathbb R$ une fonction différentiable et $\alpha > 1$. Montrer que les conditions suivantes sont équivalentes:
    Pour tout $t>0$ et $x\in \mathbb R^n$, $f(tx)=t^{\alpha}f(x)$.
    Pour tout $x\in \mathbb R^n$, $\sum_{i=1}^n x_i\partial_if(x) = \alpha f(x)$.

    Dans votre développement, vous avez utilisé le fait que la norme euclidienne est différentiable (sauf en l'origine). Est-ce vrai pour toutes les normes ?

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Très souriant et très aimable.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    16.5

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    152 : Déterminant. Exemples et applications.

  • Développement choisi : (par le jury)

    Théorème de l'élément primitif en caractéristique 0

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Aucune question sur le plan, aucune question sur le développement.

    1) Vous dites qu'en caractéristique nulle, un polynôme irréductible sur un corps $K$ est scindé à racines simples sur son corps de décomposition. Avez-vous un contre exemple dans le cas des corps finis ?
    J'ai d'abord donné le premier exemple de polynôme en caractéristique p qui me venait, $X^p-1$, j'ai expliqué que la dérivée était nulle mais j'ai réfléchi et ait remarqué que ce polynôme n'est pas irréductible ^^ Je me suis alors souvenue vaguement du contre exemple pas trivial, il faut se placer sur $K= \mathbb{F}_p(X^p)$ et considérer $T^p-X^p \in K(T)$. Il avait l'air content que je connaisse cet exemple alors il m'a aidé à le retrouver.

    2) Vous dites dans votre plan que les corps de ruptures sont isomorphes, pouvez-vous expliciter l'isomorphisme ?
    Il faut prendre l'isomorphisme qui envoie une racine sur l'autre et qui fixe le corps de base. C'est bien un isomorphisme car il transporte une base sur une base.
    - Si on prend un polynôme dans un corps de rupture $K(a)$, pouvez-vous donner son image par cet isomorphisme dans le corps de rupture $K(b)$ ?
    Il suffit d'écrire le polynôme et d'appliquer le morphisme.
    - Si on prend deux polynômes de degré $(n-1)$ dans $K(a)$ et qu'on fait leur produit, on va avoir un polynôme de degré $(2n-2)$ dans $K(a)$, alors que vous dites que la base de $K(a)$ est donnée par $(1,a,a^2,...,a^{n-1})$, pouvez-vous expliquer?
    Il s'agit de considérer le polynôme minimal de $a$ sur $K$ qui est de degré $n$, et d'expliquer que dans $K(a)$ il est nul, donc on peut exprimer les termes de degré $n$ et plus en fonction de ceux de degré inférieur à $n-1$.
    - Est ce que $K(a)$ et $K(b)$ sont isomorphes en tant que corps ?
    J'ai répondu que je pensais que non, mais je n'étais pas sûre, et je n'avais pas d'argument qui me venait. On est passé à l'exercice suivant. (la réponse est oui)

    3) On considère le polynôme $X^3-3$ dans $\mathbb{Q}$ (je l'avais mis dans le plan en application des extensions cyclotomiques). Quels sont les corps de ruptures complexes ?
    J'ai commencé par décomposer le polynôme dans $\mathbb{C}$ avec les racines troisième primitive de l'unité. Ensuite j'ai fait le petit diagramme avec $\mathbb{Q}(j)$, $\mathbb{Q}(^3\sqrt{3})$ et le corps de décomposition $\mathbb{Q}(j,^3\sqrt{3})$. J'ai raconté les degrés en utilisant Eisenstein et le fait que $j$ était complexe (les arguments classiques) et bon je me suis quand même retournée pour savoir si c'était bien ça qu'il voulait parce que je crois que j'avais un peu oublié la question (j'étais lancée ^^). Il m'a dit de continuer, et a reposé la question sur les corps de rupture complexes. J'ai donc donné $\mathbb{Q}(j*^3\sqrt{3})$ et $\mathbb{Q}(j^2 * ^3\sqrt{3})$, puis il m'a demandé le lien avec $\mathbb{Q}(^3\sqrt{3})$. J'ai expliqué qu'ils étaient isomorphes, il m'a alors demandé s'ils étaient égaux. J'ai répondu que non, l'un était réel, l'autre complexe. On a ensuite changé d'exercice.

    4) Vous donnez un théorème de construction des corps fini en utilisant les polynômes irréductibles sur $\mathbb{F}_p$, mais vous donnez l'énoncé du dénombrement des polynômes seulement après. Vous supposez donc qu'il en existe déjà pour les construire ?
    J'ai expliqué que je trouvais intéressant de d'abord donner la méthode de construction en supposant qu'on a un polynôme, et d'ensuite dire qu'en plus on pouvait toujours le faire grâce au dénombrement, puisque avec la formule qui donne le nombre de polynôme irréductible unitaire sur $\mathbb{F}_p$ par récurrence, on pouvait montrer que ce nombre était strictement positif.

    5) Pouvez-vous construire $\mathbb{F}_9$?
    J'ai expliqué le principe (j'ai d'abord dit qu'il fallait prendre un polynôme de degré 3, je commençais à fatiguer alors il m'a dit d'écrire ^^). J'ai pris $X^2-X-1$, et j'ai écrit tous les éléments de $\mathbb{F}_9$ (on prend une racine $\alpha$ de $X^2-X-1$ et on écrit tous les polynômes de degré inférieur strictement à 2 évalués en alpha). Ils m'ont demandé ensuite de multiplier deux éléments entre eux, puis de trouver l'inverse de $\alpha$. J'ai cherché au pif (et avec de la chance ai trouvé en deux coups), mais ils m'ont demandé s'il n'y avait pas plus simple. J'ai vu que j'avais écrit $\alpha^2-\alpha-1=0$, alors j'ai remarqué qu'en factorisant on avait immédiatement le résultat... ^^
    - A quel autre domaine de l'algèbre cela vous fait-il penser?
    J'ai d'abord dit à la théorie des codes que j'avais étudié en M1 mais bon, impossible d'en dire plus ^^
    Il m'a suggéré l'algèbre linéaire, avec les polynômes minimaux, etc. Ils m'ont donné une écriture, $A^5+3A^3-2A=I_n$ avec $A$ une matrice, et demandé d'en trouver l'inverse (factoriser par $A$). Ils ont continué dans cette voie mais je ne me souviens plus bien des énoncés, et c'était la fin de l'oral.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Plutôt gentil, en fait il y en avait essentiellement un qui parlait. Un des trois n'a presque rien dit, mais il souriait tout le temps et la troisième était un peu plus sèche, mais pas méchante.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'étais plutôt contente en sortant, j'ai dit quelques conneries mais je n'ai eu aucun blanc, j'avais une idée de réponse pour chaque question. Pour la préparation, je me suis remémorée le plan entre le tirage et le moment où on était dans la salle de préparation, puis j'ai écrit ma leçon en 1h45, écrit mes développements en 20 minutes et eu le temps de revoir quasiment toutes les preuves des propositions que j'avais mises dans le plan.

  • Note obtenue :

    12.25

  • Leçon choisie :

    141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.

  • Autre leçon :

    161 : Distances et isométries d'un espace affine euclidien.

  • Développement choisi : (par le jury)

    Critère d'Eisenstein

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Un échange (très) détaillé est disponible sur mon site internet : www.coquillagesetpoincare.fr

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury pas trop agréable, avec des visages très fermés même si j’ai réussi à décrocher un sourire à un des trois sur l’histoire d’un Fp-espace-vectoriel de dimension fini. Pas beaucoup d’aide pour répondre, j’ai du tout chercher tout seul. Des fois, ça allait vite, des fois un peu moins.Sur le coup, ça ne m’a pas marqué, mais avec le recul, je me suis rendu compte que je n’ai pas eu beaucoupde questions sur les polynômes irréductibles, mais surtout sur de la factorialité, le pgcd, les éléments/idéaux irréductibles et premiers, corps finis, etc

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui

  • Note obtenue :

    14

  • Leçon choisie :

    250 : Transformation de Fourier. Applications.

  • Autre leçon :

    241 : Suites et séries de fonctions. Exemples et contre-exemples.

  • Développement choisi : (par le jury)

    Formule sommatoire de Poisson

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Un échange (très) détaillé sera disponible sur mon site internet : www.coquillagesetpoincare.fr

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Une petite erreur qui aurait pu être évité sur le développement ... Mais surtout deux gros points négatifs sur l’espace de Schwartz et la convolution. De plus il est écrit dans le rapport du jury :La leçon nécessite une bonne maîtrise de questions de base telle que la définition du produit de convolution de deux fonctions de L1. Quelques petites erreurs d’étourderies car je voulais répondre vite ... mais je me corrigeais rapidement.J’ai trouvé le jury plutôt "fermé" et pas vraiment sympathique, et dont un qui était très rabaissant ... On n’est pas là pour se faire des amis, mais quand même ...

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui

  • Note obtenue :

    14.25

  • Leçon choisie :

    121 : Nombres premiers. Applications.

  • Autre leçon :

    107 : Représentations et caractères d’un groupe fini sur un C-espace vectoriel. Exemples.

  • Développement choisi : (par le jury)

    Critère d'Eisenstein + application à l'irréductibilité de $\Phi_p$ [no pdf]

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Niveau développement, le jury avait le choix entre : "Le critère d'Eisenstein et l'application à l'irréductibilité de $\Phi_p$" ou "Le théorème des deux carrés de Fermat (par les entiers de Gauss)"...

    J : Sur le développement, pourquoi $p$ divise les coefficient $q_i$ et $r_i$ ? Par exemple que se passerait-il si $p=8$ ?
    R du candidat : En particulier comme $\mathbb{Z}/p\mathbb{Z}$ est un corps pour $p$ premier, $\mathbb{Z}/p\mathbb{Z}[X]$ est un anneau principal donc factoriel et il y a alors l'unicité de la décomposition en irréductibles. Pour $p=8$, j'exhibe un contre-exemple simple, ce qui montre l'importance de $p$ nombre premier. (Le jury ne semble pas convaincu).

    J : Rappeler pourquoi $p$ divise $\binom{p}{k}$ pour $k\in [1,p-1]$ ? (Par rapport à l'irréductibilité de $\Phi_p$ toujours dans l'application de mon développement).
    R du candidat : J'écris l'égalité du coefficient binomial à sa forme fractionnaire et fait passer le dénominateur de l'autre côté afin d'appliquer le lemme de Gauss élémentaire sur la divisibilité. Ils voulaient plus de précision, j'ai donc utilisé le théorème de Wilson (c'était dans mon plan) en précisant qu'on peut le démontrer par Bézout, pour justifier totalement la divisibilité initiale. (Le jury dit ok).

    J : Sur le plan pédagogique pourquoi avoir fait une sous-partie "nombres premiers entre eux" ?
    R du candidat : Je trouve que le titre "nombres premiers" est pas suffisamment précis, donc je trouve que c'est plutôt légitime d'en parler un peu. D'ailleurs je l'ai aussi fait, car si on prend le cas de deux nombres premiers, ils sont forcément premiers entre eux, et cela permet d'obtenir d'autre propriétés intéressantes sur l'arithmétique des entiers telles que le lemme chinois avec les problèmes de congruences ou encore les équations diophantiennes de degré 1. (Le jury dit ok).

    J : Comment savoir si un nombre est premier ?
    R du candidat : Je précise dans mon plan, qu'en partie 4, j'ai parlé de trois tests importants de manière logique et progressive dont un probabiliste (Fermat, Euler et Solovay-Strassen) mais qu'il existe des tests plus basiques comme le crible d'Eratosthène ou encore celui de la méthode des diviseurs premiers jusqu'à la partie entière de la racine du nombre. Exemple sur 113 où j'en profite pour rappeler les règles de divisions par $2$, $3$ et $5$ et aussi comment la division euclidienne peut être utile. (Le jury dit ok).

    J : D'ailleurs, pour une équation diophantienne de degré $1$, y a-t-il unicité du couple de solutions ?
    R du candidat : Non d'après le théorème de Bézout, il existe une infinité de couple d'entiers qui vérifie par exemple l'équation $ax+by=1$. On essaye par exemple sur $a=5$ et $b=7$ où on trouve des solutions particulières à la main (petits nombres) et on applique la méthode habituelle pour avoir la forme générale des couples de solutions. Au lieu de $1$ on peut prendre $d$ entier tel que $pgcd(a,b)$ divise $d$. (Le jury dit ok).

    J : Mais sinon y a-t-il des méthodes algorithmiques pour trouver de tels couples d'entiers ?
    R du candidat : On peut commencer par utiliser l'algorithme une division euclidienne jusqu'au dernier reste non nul et on fait ce qu'on appelle une remontée de Bézout. Mais algorithmiquement c'est lourd. Sinon de manière plus efficace on peut utiliser l'algorithme étendu d'Euclide. (Le jury dit ok et ne semble pas en vouloir plus).

    J : A quel autre domaine des mathématiques vous fait penser une équation de la sorte ?
    R du candidat : On peut penser notamment au domaine de l'algèbre linéaire notamment avec le cas des systèmes affines (ici). On reprend l'exemple de $a=5$ et $b=7$ et ils me demandent le noyau "du système". On trouve bien une droite linéaire. (Le jury dit ok).

    J : Ok, prenons l'équation $x^2+y^2=7z^2$. Quelles sont les solutions entières ?
    R du candidat : Le premier réflexe que j'ai c'est de passer modulo $7$ et c'est la bonne idée. Ils me précisent que l'on fait l'hypothèse qu'un des deux est inversible modulo $7$. Donc j'arrive une contradiction avec une propriété sur les carrés modulo $p=7$ (le fameux critère $p\equiv 1 \pmod 4$). Et je précise aussi que puisque $7$ est un nombre premier, $\mathbb{Z}/7\mathbb{Z}$ est un corps donc un des deux $x$ ou $y$ est nécessairement divisible par $7$. Ils me demandent ensuite s'il n'y a pas une solution qui marche directement et je précise en effet que la triviale convient. On l'élimine donc et pour conclure l'exercice, j'ai du mettre en place comme je le précise au jury la méthode de "descente infinie" afin de terminer et s'apercevoir que seul $(0,0,0)$ marche. (Le jury dit ok).

    J : Expliquez RSA et sa sécurité ?
    R du candidat : J'explique plus en détails l'énoncé du plan car c'était peut-être mal rédigé et du coup c'est plus clair dans leur tête. Ensuite, je précise par rapport à la sécurité de RSA, que si un attaquant souhaitait intercepté le message (sans clé privée bien sûr) il devrait extraire une racine $e$-ième modulo $p$. C'est un problème type "log discret" qui est généralement "difficile". (Le jury dit ok).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Ils étaient corrects et bienveillants. Ils m'ont donné des petites indications quand je mettais un peu de temps à répondre mais ils laissaient le temps de s'exprimer. Déçu qu'ils n'aient pas poser de questions sur la partie "théorie des anneaux" où les éléments premiers ne sont pas toujours ceux que l'on croit. Dommage car c'est une partie intéressante mais bon... Les trois jurys ont participé a la discussion. Au final, je pensais m'être débrouillé et avoir fait un oral correct (je pensais avoir au moins la moyenne par exemple) mais au vue de la note finale, on peut se fier à rien et encore moins à leur attitude (peut-être qu'ils n'ont pas accroché à mon approche de cette leçon, je ne sais pas). C'est la vie :'( ...

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Il faut compter environ 2h40 pour composer (chercher les livres dans les malles ou dans son sac et faire attention au moment des photocopies). J'avais préparé sérieusement cette leçon pendant l'année en classe (de base j'étais allé plus loin, notamment dans les tests de primalités et les notions de factorisation de grands nombre ainsi que dans le domaine des racines modulo $p$) mais le jour-j, avec le stress, on en sait un peu moins que d'habitude et donc j'ai mis les résultats où j'étais sûr. Mais bon je ne sais pas si ça a changé grand chose au final. Donc je recommanderais, de bien s'entraîner au format 3h pendant l'année pour avoir aucune surprise...

    Sinon les surveillants dans les salles et ceux qui mènent à "l'abattoir" sont sympathiques et disponibles !

  • Note obtenue :

    4.25

  • Leçon choisie :

    104 : Groupes finis. Exemples et applications.

  • Autre leçon :

    182 : Applications des nombres complexes à la géométrie.

  • Développement choisi : (par le jury)

    Loi de réciprocité quadratique (via les formes quadratiques)

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur la loi de la réciprocité quadratique : idée de la preuve de la classification des formes quadratiques sur un corps fini, l'histoire de l'hyperplan affine pour le dénombrement.
    Questions sur le plan : donner un exemple de groupe toujours abélien, j'ai dit les groupes d'ordre p^2, ils m'ont demandé de le montrer.
    Exercices : 1. Si on prend une permutation qui s'écrit comme produit de r transpositions à supports disjoints dans Sn, je devais dénombrer le nombre de permutations de Sn qui commutaient avec, c'était quelque chose comme r!(n-r)!2^r
    2. Dans Sp, p premier, combien y-a-t-il de sous groupe d'ordre p ? (p-2)!

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury bienveillant, patient lorsque je n'arrivais pas à répondre, sans pour autant me laisser m'éterniser sur ce que je n'arrivais pas du tout à faire

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Je m'attendais à plus de questions sur la théorie des groupes, mais le jury a préféré suivre mon développement qui fait plutôt du dénombrement et donc mes questions étaient essentiellement du dénombrement. J'avais bien relu les preuves sur les p-groupes pendant la préparation, et ça n'a pas été inutile !

  • Note obtenue :

    17

  • Leçon choisie :

    220 : Equations différentielles $X'=f(t,X)$. Exemples d'étude des solutions en dimension 1 et 2.

  • Autre leçon :

    208 : Espaces vectoriels normés, applications linéaires continues. Exemples.

  • Développement choisi : (par le jury)

    Théorème de Cauchy-Lipschitz global

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur Cauchy Lipschitz : 1. Comment on justifie que la norme d'une intégrale est inférieure ou égale à l'intégrale de la norme
    2. A quel moment j'ai utilisé le fait que je me mettais sur un compact au début (pour que notre espace soit complet et que l'on puisse utiliser le théorème de point fixe)
    Questions sur le plan : 1. Dans la version localement lipschitzien, à quoi sert le lemme de Gronwall (pour montrer l'unicité)
    2. Des exercices où il fallait résoudre des équations différentielles, un premier avec une équation d'ordre 2 qu'il fallait ramener à une équation d'ordre 1,
    un second avec une équation autonome (etude des solutions constantes + CL pour dire que les solutions ne peuvent pas se croiser + application du théorème de sortie de tout compact pour dire que les solutions entre les solutions constantes sont globales + etude du signe de f pour donne la croissance/décroissance de la solution),
    et le dernier il fallait résoudre y'=sin(y), que j'avais mis en exemple de solution globale parce que sin est borné

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury très gentil, ils ne m'ont posé aucune question piège ou qui n'avait pas de rapport avec la leçon et qui auraient pu être perturbantes

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'ai assez mal géré mon temps pendant mon développement, donc je n'ai fait que Cauchy Lipschitz au lieu de rajouter la démonstration du théorème de point fixe, comme je ne l'avais pas annoncé au début, le jury n'a rien su. Mais je pense que j'ai fait l'erreur de relire mes développements dans le livre au lieu de directement les écrire. En relisant sur le livre et pas sur mes feuilles de révision, j'avais l'impression de redécouvrir les développements et c'était très déstabilisant. Il vaut mieux les faire au brouillon de tête, et ensuite boucher les trous et vérifier que l'on a rien oublier après, en comparant avec le livre.

  • Note obtenue :

    14

  • Sujet du texte choisi :

    Optimisation, EDO, problème de contrôle

  • Sujet de l'autre texte :

    Optimisation : c'était un texte sur du débruitage de signal, avec 100% d'optimisation

  • Un petit résumé du texte :

    On essayait de trouver une condition pour pouvoir faire tenir un balai en équilibre sur un doigt (un peu nul mais bon ^^) donc on étudiait langle alpha entre l'axe vertical et le balai, et on avait une equadiff
    α''(t) = cos(α(t)) + u(t)sin(α(t))
    Avec u la force appliquée sur le bout du balai quand on essaye de bouger notre doigt (on a ramené le problème en dimension 1, on ne bougeait que sur un axe)
    Donc on début on essaye de la mettre sous forme Cauchy Lipschitz
    On se ramène à un truc de la forme
    x(t) = g(t,x(t)) avec x(t) = (α(t) , α'(t))
    Avec f : R^2×R -> R^2 ; (x,u) |-> (x2, cos(x1) + u.sin(x1))
    Ensuite on fixe un u pour Cauchy Lipschitz et on a g : R×R^2 -> R^2 ; (t,x) |-> f(x(t),u(t))
    Bon tout ça c'est dans le texte, il était vraiment facile à comprendre au début.
    Ils m'ont demandé une condition pour avoir une solution globale, donc être globalement lipschitzien parce qu'après on regarde la solution sur [0,T].

    Ensuite on étudiait le système linearisé (toutes les définitions étaient dans le texte, ya juste à lire attentivement) donc on linearise et on tombe sur un truc
    X'(t) = AX(t) + Bu(t), A matrice B vecteur
    Ils demandaient de montrer la formule de la solution explicite de cette équation, donc j'ai traquillement recopié le Demailly.

    Après on cherchait à savoir si on pouvait trouver une fonction u qui soit solution du problème de cauchy avec X(0) = x0 ET qui vérifie X(T) = 0, parce que l'équilibre en 0 c'est quand on a α(T) = 0 et α'(T) = 0.

    Donc on a un theoreme qui nous donne une CNS, on vérifie que ça fonctionne dans notre cas, il y a un petit lemme avec la demo, donc je l'ai refaite en essayant de préciser tout ce que je pouvais mais j'ai pas réussi à savoir si je recopiais le texte ou si j'arrivais à ajouter des trucs utiles. Mais bon fallait bien tenir 35 minutes alors... tant pis.

    Pour cette partie EDO il y avait deux graphiques à faire, donc résoudre l'équation x' = g(t,x(t)). Du coup je me suis pas embêtée, j'ai utilisé ODE et ça a très bien marché.

    Ensuite la partie optimisation
    Ils voulaient une fonction u qui permette de trouver une solution au problème de Cauchy avec la condition X(T) = 0. Le théorème nous avait dit que c'était possible. Et ils cherchaient ce u sous la forme d'une fonction constante par morceaux : on decoupait l'intervalle [0,T] en 0 < t1 < t2 < T qui restaient fixés
    Et on cherchait à optimiser les valeurs u0 u1 et u2 qui etaient la valeur de u sur les intervalles (n'hésitez pas à relire cette phrase plusieurs fois elle est très mal expliquée ^^)
    Ils faisaient un algorithme de gradient (à pas oprimal il me semble) que je n'ai pas réussi à coder

    Ensuite pour les questions
    - ils m'ont demandé de citer des théorèmes d'existence et d'unicité de minimum (ici pas d'extrema liés, on avait pas de contraintes extérieures)
    - donner un exemple de méthode derrière ode donc Euler implicite ou explicite, les ecrire, définition de la convergence/stabilité

  • Qu'avez vous produit durant la préparation ? (plan, code, dessins, preuves, ...)

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Pas de réponse fournie.

  • Suite à la présentation, qu'est ce qui vous semblait améliorable ? (plan, gestion du temps, choix des résultats présentés, ...)

    J'ai essayé de codé la partie optimisation, mais elle était assez compliquée, et même si le texte n'était pas très dur, je pense que c'était chaud d'essayer de tout faire, donc je me suis plutôt attardé sur les démo de la partie EDO. Et je n'ai pas recodé le schéma d'Euler, mais j'aurai du mieux relire la preuve de la convergence.

  • Quelle a été l'attitude du jury (muet/aide/cassant) durant les questions ?

    Le jury était très gentil, ils ont tous participé à l'oral

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note

    15.75

  • Leçon choisie :

    144 : Racines d’un polynôme. Fonctions symétriques élémentaires. Exemples et applications.

  • Autre leçon :

    154 : Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.

  • Développement choisi : (par le jury)

    Suites de Sturm

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    On me demande de tester l'algorithme de Sturm sur un polynôme à 2 inconnues, de degré 3. Je fais toutes les divisions euclidiennes au tableau le jury avait l'air de les faire aussi sur un papier.. A la fin personne n'a trouvé le même résultat --> on passe à autre chose !
    Petite remarque du jury sur le fait que les symétries vectorielles ne sont pas forcément diagonalisables en caractéristique 2.
    On me demande à quelle moment l'hypothèse de la caractéristique 0 intervient lors de la preuve de la caractérisation d'une racine d'ordre k avec le polynôme dérivé. Je galère comme un naze, ils m'aident beaucoup.
    Ils me demandent un contre ex si on est en carac p : il était dans mon plan.
    Enfin on me pose un exo de dénombrement d'un ensemble ( qui était l'ensemble des zéros de 3 polynomes à 2 indéterminés je crois) on me fait poser une application chelou et je devais montrer qu'en fait l'ensemble c'était l'image réciproque de 0 par cette application. Ca a dérivé sur les corps finis j'ai pas tout suivi...

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Extraordinairement gentil et aidant alors que j'étais trop naze.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas vraiment, il y avait une erreur au tout début de mon développement que je n'avais jamais remarqué donc ça met pas à l'aise.
    J'ai beaucoup hésité et j'ai l'impression que le jury m'a pas mal aidé. Je ne m'attendais pas à avoir une telle note avec ce que j'ai fait. Comme quoi, ne vous découragez pas même si vous pensez avoir râté !!!!!!

  • Note obtenue :

    14

  • Leçon choisie :

    202 : Exemples de parties denses et applications.

  • Autre leçon :

    243 : Convergence des séries entières, propriétés de la somme. Exemples et applications.

  • Développement choisi : (par le jury)

    Théorème de Stone-Weierstrass

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Présentation de plan et développement très bien passés.
    Le jury avait l'air très content de mon choix de leçon, de mon plan et du développement. On me demande si je connais une autre façon d'approcher de façon uniforme l'applicaiton valeur absolue sans utiliser le critère de Dini : je réponds les polynômes de Bernstein.
    Quel est l'avantage de cette méthode ? --> converge plus rapidement que celle que j'avais présenté mais c'était aps le but de mon dév.
    ET LA la catastrophe, le jury du milieu jugeant que j'avais un développement d'un niveau honnête me pose un exo avec pleins de notations, je devais montrer qu'un certain ensemble vachement moche était bien une sous-algèbre séparante et unitaire. J'ai rien su faire, je m'embrouiller avec les notations et je n'arrivais pas à me concentrer ---> déception immense du jury du milieu qui avait mis tant d'espoir en moi...
    Du coup le jury de gauche redescend d'un cran dans la difficulté et me demande l'exo classique sur Weiertrass ( premiere question de l'épreuve écrite d'analyse de 2018). Et ensuite on a terminé avec le même exo mais dans le cas L2 où fallait faire un Cauchy Schwarz.
    Derniere question : "connaissez-vous un autre ex de parties denses dans les espaces de matrices (outre Gln(C))" je dis oui les matrices diagonalisables sur C. On me répond que j'ai 12 sec exeactement pour le montrer. Donc je donne vite fait une idée de preuve passant par la trigonalisation etc..

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Très sympas et aidants malgré le fait que je les avais déçu...

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'adore cette leçon donc le couplage m'était favorable, j'ai fait je pense un bon plan, un bon développement mais j'ai pas assuré sur les questions donc ma note ne m'a pas choqué.

  • Note obtenue :

    12

  • Leçon choisie :

    104 : Groupes finis. Exemples et applications.

  • Autre leçon :

    181 : Barycentres dans un espace affine réel de dimension finie, convexité. Applications.

  • Développement choisi : (par le jury)

    Théorème de Polya

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    C'était mon premier oral, j'étais très stressée donc je ne me rappelle plus très bien des questions. Celle à laquelle je n'ai pas pu répondre m'a marquée : en définitive il fallait donner l'ordre d'un élément de Z/nZ et je ne trouvais pas, ce qui me stressait, ce qui faisait que j'avais encore moins de chances de trouver... Du coup, conseil : révisez les résultats de base ! Je me rappelle quand même de trois autres questions, mais j'en ai eu environ sept au total : la première question toute bête (c'est un classique à l'agreg), en l'occurrence "Que donne le théorème de structure des groupes abéliens finis pour Z/15Z ?" (que Z/15Z est isomorphe à lui-même (et l'unicité de l'écriture comme dans le théorème)); j'ai aussi eu "Que pouvez-vous dire sur la structure du groupe alterné A_n ?" (que A_n est simple pour n=3 et n>=5 (mais pas pour n=4, cf. les doubles transpositions (avec l'identité))) et "Que dire de Phi qui va de [1,1] x ... x [1,n] (intervalles d'entiers) dans S_n qui à (a_1,...,a_n) associe (1 a_1) (1 a_2) ... (1 a_n) ?" (elle est bijective).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury très poker face (alors qu'en général les jurys sont souriants), et qui a grimacé quand je n'ai pas réussi à donner l'ordre d'un élément de Z/nZ. Le jury a essayé de m'aider un peu mais ça n'a pas marché; j'ai eu l'impression de passer beaucoup de temps dessus, comme je bloquais complètement j'aurais préféré que le jury passe à autre chose (mais bon ça se comprend qu'ils s'attendent à ce que j'arrive à trouver l'ordre d'un élément de Z/nZ; c'est juste qu'avec le stress du jour J, on n'aime pas du tout bloquer sur un truc simple et on préférerait zapper).

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Le temps passe très très vite pendant la préparation; je trouvais mon plan très incomplet quand il était temps de le donner (c'est triste quand on a plein de choses à dire sur un sujet et qu'on n'en a dit qu'un tiers...). J'étais surprise que le jury ne soit pas plus encourageant (pendant les oraux blancs et après pendant les deux autres oraux que j'ai passés les jurys étaient toujours encourageants). Vu ma note le jury devait être plus content que ce qu'il laissait paraître.

  • Note obtenue :

    16.25

  • Leçon choisie :

    239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.

  • Autre leçon :

    201 : Espaces de fonctions. Exemples et applications.

  • Développement choisi : (par le jury)

    Prolongement de la fonction Gamma d'Euler

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -Concernant le développement: on m'a demandé de bien préciser des points de mon developpement (notamment au bout j'ai 10 minutes j'ai compris qu'on voulait de moi que je dise que le fait que la série convergeait normalement était causé par le fait que la série des normes convergeait...)
    -On m'a ensuite demandé de calculer l'integrale sur le cercle de centre 0 et de rayon 1/2 de la fonction Gamma. Il fallait pour celà utiliser la formule des résidus (pour laquelle j'étais peu sure de moi et qu'on ne m'a jamais clairement confirmé). J'ai mis beaucoup de temps ensuite à calculer proprement le résidus de gamma en 0 bêtement...
    -On m'a ensuite demander une base hilbertienne de L1(R) et j'ai dis beaucoup de bétises jusqu'à comprendre enfin qu'ils nous voulaient pas une base pour la mesure de Lebesgue mais qu'ils autorisaient une autre mesure, et qu'ils attendaient donc les polynomes de l'hermite (grâce à mon autre developpement)
    -Ensuite on m'a demandé de montrer le Lemme de Riemann-Lebesgue. J'ai voulu commencer par expliquer pourquoi, "physiquement" on pouvait s'attendre à ce résultat, grâce à une analogie avec les séries de Fourier, mais ils m'ont bien vite coupé pour me dire que je ne repondais pas à leur question, et j'ai donc ensuite montré proprement le lemme grâce à la densité des fonctions C infinies à support compact

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Pour cet oral, presque seul le directeur du jury parlait, et j'ai été très etonnée.
    D'une part ils étaient extremement froid, mais surtout ils ont très très peu parlé, donc quand je repondais et qu'ils me regardaient sans rien faire, je prenais leur silence pour une chance de me corriger, et donc en suis arrivée à chercher des erreurs là où je n'en avais pas.
    D'autre part, je n'ai vraiment pas compris que ma petite "interpretation physique" ne soit pas appréciée.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Je comptais beaucoup sur les livres de la bibliothèque de l'agrégation, or certains livres comme par exemple le Zuily Queffelec n'étaient qu'en un seul exemplaire, ce qui peut etre inquietant...

  • Note obtenue :

    12.75

  • Leçon choisie :

    157 : Endomorphismes trigonalisables. Endomorphismes nilpotents.

  • Autre leçon :

    108 : Exemples de parties génératrices d’un groupe. Applications.

  • Développement choisi : (par le jury)

    Critère de nilpotence de cartan [ no pdf]

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -Ils ne connaissaient visiblement pas le critère de nilpotence de cartan ( qui se trouve dans le beck) et ont même cru pendant quelques (longues) minutes que m'ont énoncé était faux et m'ont donc fait écrire l'énoncé au tableau jusqu'à se rendre compte qu'il n'y avait aucune erreur (ouf).
    Mon developpement s'est bien passé. Ils m'avaient demandé avant de me lancer si je pouvais, si le temps me le permettait, prouver le lemme dont je me servais à la fin. Après mon developpement je leur ai proposé de leur montrer, mais ils n'ont finalement pas voulu.
    Ils m'ont ensuite demandé comment il pouvait être utile concrètement ( j'ai dis que c'était un lemme important dans la théorie des algèbres de Lie) et ont demandé une version plus faible qui serait plus directement utile, j'ai donc dis qu'on en déduisait le fameux critère : si A tq pour tout k on a tr(A^k)=0 alors A nilpotent.
    Ensuite, j'avais marqué dans mon plan un exemple de matrice qui n'était pas diagonalisable dans R ( la fameuse (01)(-10)) sauf que j'avais oublié le - et que je n'arrivais pas à comprendre mon erreur. Ils ont donc voulu une interpréation de la matrice en terme géométrique pour que je vois les valeurs propres. (A la toute fin je me suis rendue compte que ah oui en fait elle est symétrique donc ce que je disais choquait...)
    Ensuite je ne me souviens plus clairement mais dans mon plan j'avais parlé de symétrie vectorielle et ils m'ont demandé de le representer et j'ai beaucoup buggé, n'arrivant pas à m'absoudre des symétries orthogonales. J'avais mis de la topologie dans mon plan alors ils m'en ont parlé et j'ai dis des enormes conneries mais m'en suis heureusement rendu compte avant la fin.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était extremement sympathique. Malgré un membre qui était assez froid, les autres étaient sincèrement de bonne humeur mais c'était très agréable !

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Chose à savoir : on a droit à nos notes de cours pendant l'oral ! Pas pendant le developpement evidemment mais pendant la séance de questions.

  • Note obtenue :

    13.25

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Développement choisi : (par le jury)

    Sous-groupes distingués et tables de caractères

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement, je m'en sors.

    Question 1 : Montrer le théorème de Cayley (tout groupe G de cardinal n s'injecte transitivement dans le groupe symétrique de taille n). Je répond correctement.

    Question 2 : Montrer que le quotient S4/H où H est le groupe composé des doubles transpositions et de l'identité, est isomorphe à S3.

    Indication: Faire agir S4 par conjugaison sur H. Même avec l'indication, je peine.

    Réponse : On voit que, puisque cette action fixe H qui en est le noyau, on peut, avec le premier théorème d' isomorphisme exhiber un morphisme de S4/H dans S3 (car il y a trois classes de conjugaisons restantes et l'action par conjugaison envoie une classe de conjugaison sur une autre).

    Question 3 : Quel groupe est isomorphe à l'ensemble des isométries directes du tétraèdre régulier ? Prouvez le ? Je sais que c'est S4. Mais je n'arrive pas à visualiser correctement quelle symétrie correspond à quelle permutation.

    Idée 1: On peut se ramener aux isométries vectorielles car une isométrie affine qui fixe quatre points fixe leur barycentre. Il suffit donc de considérer les isométries vectorielles dont l'origine est le barycentre du tétraèdre régulier.

    Idée 2: Trouver une symétrie qui effectue une permutation entre deux sommets, qui correspond donc à une transposition.

    Idée 3 : Puisque les transpositions engendrent S4, on a une surjection de S4 dans le groupe des isométries du tétraèdre régulier. Puis voir qu'un endomorphisme qui fixe les quatre sommets du tétraèdre fixe une base. C'est donc l'identité. D'où l'injectivité.

    Je sèche sur les idées 1 et 2 mais j'arrive à donner la conclusion (idée 3).

    Résultat : 11/20

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury aidant mais l'un d'eux est assez pressé et me laisse peu de temps pour réfléchir à ses questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais parlé de représentations mais je ne pensais pas être interrogé sur la géométrie affine et les isométries du tétraèdre.

  • Note obtenue :

    11

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Développement choisi : (par le jury)

    Sous-groupes distingués et tables de caractères

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement, je m'en sors.

    Question 1 : Montrer le théorème de Cayley (tout groupe G de cardinal n s'injecte transitivement dans le groupe symétrique de taille n). Je répond correctement.

    Question 2 : Montrer que le quotient S4/H où H est le groupe composé des doubles transpositions et de l'identité, est isomorphe à S3.

    Indication: Faire agir S4 par conjugaison sur H. Même avec l'indication, je peine.

    Réponse : On voit que, puisque cette action fixe H qui en est le noyau, on peut, avec le premier théorème d' isomorphisme exhiber un morphisme de S4/H dans S3 (car il y a trois classes de conjugaisons restantes et l'action par conjugaison envoie une classe de conjugaison sur une autre).

    Question 3 : Quel groupe est isomorphe à l'ensemble des isométries directes du tétraèdre régulier ? Prouvez le ? Je sais que c'est S4. Mais je n'arrive pas à visualiser correctement quelle symétrie correspond à quelle permutation.

    Idée 1: On peut se ramener aux isométries vectorielles car une isométrie affine qui fixe quatre points fixe leur barycentre. Il suffit donc de considérer les isométries vectorielles dont l'origine est le barycentre du tétraèdre régulier.

    Idée 2: Trouver une symétrie qui effectue une permutation entre deux sommets, qui correspond donc à une transposition.

    Idée 3 : Puisque les transpositions engendrent S4, on a une surjection de S4 dans le groupe des isométries du tétraèdre régulier. Puis voir qu'un endomorphisme qui fixe les quatre sommets du tétraèdre fixe une base. C'est donc l'identité. D'où l'injectivité.

    Je sèche sur les idées 1 et 2 mais j'arrive à donner la conclusion (idée 3).

    Résultat : 11/20

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury aidant mais l'un d'eux est assez pressé et me laisse peu de temps pour réfléchir à ses questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais parlé de représentations mais je ne pensais pas être interrogé sur la géométrie affine et les isométries du tétraèdre.

  • Note obtenue :

    11

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Développement choisi : (par le jury)

    Sous-groupes distingués et tables de caractères

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement, je m'en sors.

    Question 1 : Montrer le théorème de Cayley (tout groupe G de cardinal n s'injecte transitivement dans le groupe symétrique de taille n). Je répond correctement.

    Question 2 : Montrer que le quotient S4/H où H est le groupe composé des doubles transpositions et de l'identité, est isomorphe à S3.

    Indication: Faire agir S4 par conjugaison sur H. Même avec l'indication, je peine.

    Réponse : On voit que, puisque cette action fixe H qui en est le noyau, on peut, avec le premier théorème d' isomorphisme exhiber un morphisme de S4/H dans S3 (car il y a trois classes de conjugaisons restantes et l'action par conjugaison envoie une classe de conjugaison sur une autre).

    Question 3 : Quel groupe est isomorphe à l'ensemble des isométries directes du tétraèdre régulier ? Prouvez le ? Je sais que c'est S4. Mais je n'arrive pas à visualiser correctement quelle symétrie correspond à quelle permutation.

    Idée 1: On peut se ramener aux isométries vectorielles car une isométrie affine qui fixe quatre points fixe leur barycentre. Il suffit donc de considérer les isométries vectorielles dont l'origine est le barycentre du tétraèdre régulier.

    Idée 2: Trouver une symétrie qui effectue une permutation entre deux sommets, qui correspond donc à une transposition.

    Idée 3 : Puisque les transpositions engendrent S4, on a une surjection de S4 dans le groupe des isométries du tétraèdre régulier. Puis voir qu'un endomorphisme qui fixe les quatre sommets du tétraèdre fixe une base. C'est donc l'identité. D'où l'injectivité.

    Je sèche sur les idées 1 et 2 mais j'arrive à donner la conclusion (idée 3).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury aidant mais l'un d'eux est assez pressé et me laisse peu de temps pour réfléchir à ses questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais parlé de représentations mais je ne pensais pas être interrogé sur la géométrie affine et les isométries du tétraèdre.

  • Note obtenue :

    11

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Développement choisi : (par le jury)

    Sous-groupes distingués et tables de caractères

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement, je m'en sors.

    Question 1 : Montrer le théorème de Cayley (tout groupe G de cardinal n s'injecte transitivement dans le groupe symétrique de taille n). Je répond correctement.

    Question 2 : Montrer que le quotient S4/H où H est le groupe composé des doubles transpositions et de l'identité, est isomorphe à S3.

    Indication: Faire agir S4 par conjugaison sur H. Même avec l'indication, je peine.

    Réponse : On voit que, puisque cette action fixe H qui en est le noyau, on peut, avec le premier théorème d' isomorphisme exhiber un morphisme de S4/H dans S3 (car il y a trois classes de conjugaisons restantes et l'action par conjugaison envoie une classe de conjugaison sur une autre).

    Question 3 : Quel groupe est isomorphe à l'ensemble des isométries directes du tétraèdre régulier ? Prouvez le ? Je sais que c'est S4. Mais je n'arrive pas à visualiser correctement quelle symétrie correspond à quelle permutation.

    Idée 1: On peut se ramener aux isométries vectorielles car une isométrie affine qui fixe quatre points fixe leur barycentre. Il suffit donc de considérer les isométries vectorielles dont l'origine est le barycentre du tétraèdre régulier.

    Idée 2: Trouver une symétrie qui effectue une permutation entre deux sommets, qui correspond donc à une transposition.

    Idée 3 : Puisque les transpositions engendrent S4, on a une surjection de S4 dans le groupe des isométries du tétraèdre régulier. Puis voir qu'un endomorphisme qui fixe les quatre sommets du tétraèdre fixe une base. C'est donc l'identité. D'où l'injectivité.

    Je sèche sur les idées 1 et 2 mais j'arrive à donner la conclusion (idée 3).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury aidant mais l'un d'eux est assez pressé et me laisse peu de temps pour réfléchir à ses questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais parlé de représentations mais je ne pensais pas être interrogé sur la géométrie affine et les isométries du tétraèdre.

  • Note obtenue :

    11

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Développement choisi : (par le jury)

    Sous-groupes distingués et tables de caractères

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement, je m'en sors.

    Question 1 : Montrer le théorème de Cayley (tout groupe G de cardinal n s'injecte transitivement dans le groupe symétrique de taille n). Je répond correctement.

    Question 2 : Montrer que le quotient S4/H où H est le groupe composé des doubles transpositions et de l'identité, est isomorphe à S3.

    Indication: Faire agir S4 par conjugaison sur H. Même avec l'indication, je peine.

    Réponse : On voit que, puisque cette action fixe H qui en est le noyau, on peut, avec le premier théorème d' isomorphisme exhiber un morphisme de S4/H dans S3 (car il y a trois classes de conjugaisons restantes et l'action par conjugaison envoie une classe de conjugaison sur une autre).

    Question 3 : Quel groupe est isomorphe à l'ensemble des isométries directes du tétraèdre régulier ? Prouvez le ? Je sais que c'est S4. Mais je n'arrive pas à visualiser correctement quelle symétrie correspond à quelle permutation.

    Idée 1: On peut se ramener aux isométries vectorielles car une isométrie affine qui fixe quatre points fixe leur barycentre. Il suffit donc de considérer les isométries vectorielles dont l'origine est le barycentre du tétraèdre régulier.

    Idée 2: Trouver une symétrie qui effectue une permutation entre deux sommets, qui correspond donc à une transposition.

    Idée 3 : Puisque les transpositions engendrent S4, on a une surjection de S4 dans le groupe des isométries du tétraèdre régulier. Puis voir qu'un endomorphisme qui fixe les quatre sommets du tétraèdre fixe une base. C'est donc l'identité. D'où l'injectivité.

    Je sèche sur les idées 1 et 2 mais j'arrive à donner la conclusion (idée 3).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury aidant mais l'un d'eux est assez pressé et me laisse peu de temps pour réfléchir à ses questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais parlé de représentations mais je ne pensais pas être interrogé sur la géométrie affine et les isométries du tétraèdre.

  • Note obtenue :

    11

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Développement choisi : (par le jury)

    Sous-groupes distingués et tables de caractères

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement, je m'en sors.

    Question 1 : Montrer le théorème de Cayley (tout groupe G de cardinal n s'injecte transitivement dans le groupe symétrique de taille n). Je répond correctement.

    Question 2 : Montrer que le quotient S4/H où H est le groupe composé des doubles transpositions et de l'identité, est isomorphe à S3.

    Indication: Faire agir S4 par conjugaison sur H. Même avec l'indication, je peine.

    Réponse : On voit que, puisque cette action fixe H qui en est le noyau, on peut, avec le premier théorème d' isomorphisme exhiber un morphisme de S4/H dans S3 (car il y a trois classes de conjugaisons restantes et l'action par conjugaison envoie une classe de conjugaison sur une autre).

    Question 3 : Quel groupe est isomorphe à l'ensemble des isométries directes du tétraèdre régulier ? Prouvez le ? Je sais que c'est S4. Mais je n'arrive pas à visualiser correctement quelle symétrie correspond à quelle permutation.

    Idée 1: On peut se ramener aux isométries vectorielles car une isométrie affine qui fixe quatre points fixe leur barycentre. Il suffit donc de considérer les isométries vectorielles dont l'origine est le barycentre du tétraèdre régulier.

    Idée 2: Trouver une symétrie qui effectue une permutation entre deux sommets, qui correspond donc à une transposition.

    Idée 3 : Puisque les transpositions engendrent S4, on a une surjection de S4 dans le groupe des isométries du tétraèdre régulier. Puis voir qu'un endomorphisme qui fixe les quatre sommets du tétraèdre fixe une base. C'est donc l'identité. D'où l'injectivité.

    Je sèche sur les idées 1 et 2 mais j'arrive à donner la conclusion (idée 3).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury aidant mais l'un d'eux est assez pressé et me laisse peu de temps pour réfléchir à ses questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais parlé de représentations mais je ne pensais pas être interrogé sur la géométrie affine et les isométries du tétraèdre.

  • Note obtenue :

    11

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Développement choisi : (par le jury)

    Sous-groupes distingués et tables de caractères

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement, je m'en sors.

    Question 1 : Montrer le théorème de Cayley (tout groupe G de cardinal n s'injecte transitivement dans le groupe symétrique de taille n). Je répond correctement.

    Question 2 : Montrer que le quotient S4/H où H est le groupe composé des doubles transpositions et de l'identité, est isomorphe à S3.

    Indication: Faire agir S4 par conjugaison sur H. Même avec l'indication, je peine.

    Réponse : On voit que, puisque cette action fixe H qui en est le noyau, on peut, avec le premier théorème d' isomorphisme exhiber un morphisme de S4/H dans S3 (car il y a trois classes de conjugaisons restantes et l'action par conjugaison envoie une classe de conjugaison sur une autre).

    Question 3 : Quel groupe est isomorphe à l'ensemble des isométries directes du tétraèdre régulier ? Prouvez le ? Je sais que c'est S4. Mais je n'arrive pas à visualiser correctement quelle symétrie correspond à quelle permutation.

    Idée 1: On peut se ramener aux isométries vectorielles car une isométrie affine qui fixe quatre points fixe leur barycentre. Il suffit donc de considérer les isométries vectorielles dont l'origine est le barycentre du tétraèdre régulier.

    Idée 2: Trouver une symétrie qui effectue une permutation entre deux sommets, qui correspond donc à une transposition.

    Idée 3 : Puisque les transpositions engendrent S4, on a une surjection de S4 dans le groupe des isométries du tétraèdre régulier. Puis voir qu'un endomorphisme qui fixe les quatre sommets du tétraèdre fixe une base. C'est donc l'identité. D'où l'injectivité.

    Je sèche sur les idées 1 et 2 mais j'arrive à donner la conclusion (idée 3).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury aidant mais l'un d'eux est assez pressé et me laisse peu de temps pour réfléchir à ses questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais parlé de représentations mais je ne pensais pas être interrogé sur la géométrie affine et les isométries du tétraèdre.

  • Note obtenue :

    11

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Développement choisi : (par le jury)

    Sous-groupes distingués et tables de caractères

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement, je m'en sors.

    Question 1 : Montrer le théorème de Cayley (tout groupe G de cardinal n s'injecte transitivement dans le groupe symétrique de taille n). Je répond correctement.

    Question 2 : Montrer que le quotient S4/H où H est le groupe composé des doubles transpositions et de l'identité, est isomorphe à S3.

    Indication: Faire agir S4 par conjugaison sur H. Même avec l'indication, je peine.

    Réponse : On voit que, puisque cette action fixe H qui en est le noyau, on peut, avec le premier théorème d' isomorphisme exhiber un morphisme de S4/H dans S3 (car il y a trois classes de conjugaisons restantes et l'action par conjugaison envoie une classe de conjugaison sur une autre).

    Question 3 : Quel groupe est isomorphe à l'ensemble des isométries directes du tétraèdre régulier ? Prouvez le ? Je sais que c'est S4. Mais je n'arrive pas à visualiser correctement quelle symétrie correspond à quelle permutation.

    Idée 1: On peut se ramener aux isométries vectorielles car une isométrie affine qui fixe quatre points fixe leur barycentre. Il suffit donc de considérer les isométries vectorielles dont l'origine est le barycentre du tétraèdre régulier.

    Idée 2: Trouver une symétrie qui effectue une permutation entre deux sommets, qui correspond donc à une transposition.

    Idée 3 : Puisque les transpositions engendrent S4, on a une surjection de S4 dans le groupe des isométries du tétraèdre régulier. Puis voir qu'un endomorphisme qui fixe les quatre sommets du tétraèdre fixe une base. C'est donc l'identité. D'où l'injectivité.

    Je sèche sur les idées 1 et 2 mais j'arrive à donner la conclusion (idée 3).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury aidant mais l'un d'eux est assez pressé et me laisse peu de temps pour réfléchir à ses questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais parlé de représentations mais je ne pensais pas être interrogé sur la géométrie affine et les isométries du tétraèdre.

  • Note obtenue :

    11

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Développement choisi : (par le jury)

    Sous-groupes distingués et tables de caractères

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement, je m'en sors.

    Question 1 : Montrer le théorème de Cayley (tout groupe G de cardinal n s'injecte transitivement dans le groupe symétrique de taille n). Je répond correctement.

    Question 2 : Montrer que le quotient S4/H où H est le groupe composé des doubles transpositions et de l'identité, est isomorphe à S3.

    Indication: Faire agir S4 par conjugaison sur H. Même avec l'indication, je peine.

    Réponse : On voit que, puisque cette action fixe H qui en est le noyau, on peut, avec le premier théorème d' isomorphisme exhiber un morphisme de S4/H dans S3 (car il y a trois classes de conjugaisons restantes et l'action par conjugaison envoie une classe de conjugaison sur une autre).

    Question 3 : Quel groupe est isomorphe à l'ensemble des isométries directes du tétraèdre régulier ? Prouvez le ? Je sais que c'est S4. Mais je n'arrive pas à visualiser correctement quelle symétrie correspond à quelle permutation.

    Idée 1: On peut se ramener aux isométries vectorielles car une isométrie affine qui fixe quatre points fixe leur barycentre. Il suffit donc de considérer les isométries vectorielles dont l'origine est le barycentre du tétraèdre régulier.

    Idée 2: Trouver une symétrie qui effectue une permutation entre deux sommets, qui correspond donc à une transposition.

    Idée 3 : Puisque les transpositions engendrent S4, on a une surjection de S4 dans le groupe des isométries du tétraèdre régulier. Puis voir qu'un endomorphisme qui fixe les quatre sommets du tétraèdre fixe une base. C'est donc l'identité. D'où l'injectivité.

    Je sèche sur les idées 1 et 2 mais j'arrive à donner la conclusion (idée 3).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury aidant mais l'un d'eux est assez pressé et me laisse peu de temps pour réfléchir à ses questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais parlé de représentations mais je ne pensais pas être interrogé sur la géométrie affine et les isométries du tétraèdre.

  • Note obtenue :

    11

  • Leçon choisie :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Développement choisi : (par le jury)

    Sous-groupes distingués et tables de caractères

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le développement, je m'en sors.

    Question 1 : Montrer le théorème de Cayley (tout groupe G de cardinal n s'injecte transitivement dans le groupe symétrique de taille n). Je répond correctement.

    Question 2 : Montrer que le quotient S4/H où H est le groupe composé des doubles transpositions et de l'identité, est isomorphe à S3.

    Indication: Faire agir S4 par conjugaison sur H. Même avec l'indication, je peine.

    Réponse : On voit que, puisque cette action fixe H qui en est le noyau, on peut, avec le premier théorème d' isomorphisme exhiber un morphisme de S4/H dans S3 (car il y a trois classes de conjugaisons restantes et l'action par conjugaison envoie une classe de conjugaison sur une autre).

    Question 3 : Quel groupe est isomorphe à l'ensemble des isométries directes du tétraèdre régulier ? Prouvez le ? Je sais que c'est S4. Mais je n'arrive pas à visualiser correctement quelle symétrie correspond à quelle permutation.

    Idée 1: On peut se ramener aux isométries vectorielles car une isométrie affine qui fixe quatre points fixe leur barycentre. Il suffit donc de considérer les isométries vectorielles dont l'origine est le barycentre du tétraèdre régulier.

    Idée 2: Trouver une symétrie qui effectue une permutation entre deux sommets, qui correspond donc à une transposition.

    Idée 3 : Puisque les transpositions engendrent S4, on a une surjection de S4 dans le groupe des isométries du tétraèdre régulier. Puis voir qu'un endomorphisme qui fixe les quatre sommets du tétraèdre fixe une base. C'est donc l'identité. D'où l'injectivité.

    Je sèche sur les idées 1 et 2 mais j'arrive à donner la conclusion (idée 3).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury aidant mais l'un d'eux est assez pressé et me laisse peu de temps pour réfléchir à ses questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais parlé de représentations mais je ne pensais pas être interrogé sur la géométrie affine et les isométries du tétraèdre.

  • Note obtenue :

    11

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    245 : Fonctions holomorphes sur un ouvert de C. Exemples et applications.

  • Autre leçon :

    208 : Espaces vectoriels normés, applications linéaires continues. Exemples.

  • Développement choisi : (par le jury)

    Calcul de l'intégrale de 1/(1+x^6) par les résidus [no ref, no pdf]

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Aucune questions sur le développement.

    Sur le plan/cours:

    1) Pouvez-vous donner une idée de la preuve de la formule de Cauchy?
    Je n'ai pas su répondre (ça commence bien), il faut utiliser le théorème de Cauchy sur les primitives.
    - Vous avez dit que le théorème d'holomorphie sous le signe intégrale donnait un équivalent des théorèmes de continuité et de dérivabilité dans le cas réel. Pouvez-vous expliquer ce que vous vouliez dire, et en quoi il est plus fort ?
    J'ai expliqué que le principe était le même au niveau des hypothèses, mais qu'il était beaucoup plus fort car il suffit de majorer la fonction elle-même (en module) et non pas ses dérivées, mais qu'on obtient quand même le caractère infiniment dérivable et une expression des dérivées $n^{i\grave{e}mes}$ (dû à l'analycité qui donne un contrôle de toutes les dérivées).
    - Avez-vous une idée de la preuve ?
    J'ai expliqué qu'il fallait utiliser la démonstration de [holomorphie implique analytique] qui donne une expression des coefficients du développement en série entière pour une fonction analytique, mais je ne savais pas trop comment ça marchait après.
    - Que pouvez-vous dire d'une fonction entière et dont le module est borné?
    C'est le théorème de Liouville : elle est constante. (dans le plan je n'avais mis que le principe du module maximum et pas le théorème de Liouville).

    Exercices :

    1) On prend $f$ une fonction analytique sur un disque de rayon $R$ et de centre $a$. Que pouvez-vous dire de $f$ ?
    J'ai écrit son développement en série entière, c'est à dire : $f = \sum_{n \geq 0} a_n(z-a)^n$.
    - Prenez un autre point $b$ dans le disque et écrivez le développement en série entière de $f$ autour de $b$. Pouvez-vous exprimer les coefficients de la deuxième série en fonction de la première ?
    J'ai essayé de dériver la première expression, de l'évaluer en $b$. Je ne me souviens plus vraiment mais on s'en sortait à peu près comme ça.

    2) On prend $f$ et $g$ deux fonctions holomorphes sur un ouvert de $\mathbb{C}$ qui contient le disque unité. On suppose que $f$ et $g$ ne s'annulent pas sur le disque, et que $|f|=|g|=1$ sur le disque. Montrer qu'il existe $\lambda \in \mathbb{C}$ tel que $f = \lambda g$ sur le disque.
    Puisque $g$ ne s'annule pas, on peut déjà considérer $h=f/g$ qui est donc holomorphe sur le disque, et de module 1. C'était le début, après je ne me souviens plus de comment on fait, mais avec leurs conseils je suis arrivée au bout.
    - Auriez-vous un contre-exemple à cet exercice ?
    Puisqu'on a supposé que $f$ et $g$ ne s'annulaient pas, j'ai pris $f(z)=z$ et $g(z)=z^2$. Ca marchait.

    3) Auriez-vous un exemple de fonction définie sur $\mathbb{C}$ mais pas holomorphe ?
    On prend $f(z)=\bar{z}$ (ils m'ont largement soufflé l'idée). Ils m'ont demandé d'expliquer: j'ai donc fait le taux d'accroissements et, avec beaucoup de mal, ai réussi à montrer que la limite n'existait pas (on approche $0$ sur la droite de réels et sur la droite des imaginaires pures).

    4) On prend $f$ une fonction non constante sur un ouvert $\Omega$ de $\mathbb{C}$ telle que $|f|$ admette un minimum en $a$ sur $\Omega$. Montrer que $f$ s'annule sur $\Omega$.
    Je n'avais aucune idée. Ils m'ont suggéré un raisonnement par l'absurde, et c'est allé tout seul: on suppose qu'elle ne s'annule pas sur $\Omega$, on considère $1/f$ dont le module admet alors un maximum en $a$ et on utilise le principe du module maximum qui donne que $1/f$ et donc $f$ est constante.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Ils étaient trois (deux hommes et une femme), et ont été vraiment très gentils et bienveillants. La femme ne faisait que me sourire et m'aidait quand je n'avais pas d'idée, un des deux hommes (celui qui posait les questions de cours au début) me souriait aussi mais ne parlait pas beaucoup, et le troisième (celui qui m'a posé la majeur partie des exercices) était moins souriant mais m'aidait aussi quand j'étais en panne d'idée.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais vraiment très peur, car j'ai regretté mon choix au bout d'une dizaine de minutes en me rendant compte que je ne savais presque rien sur les fonctions holomorphes (bon finalement je l'ai quand même eue, comme quoi tout est possible ^^). Je pense que le fait qu'ils aient été vraiment bienveillants (plus que pour l'algèbre, et bien plus que pour la modélisation) a beaucoup aidé à me mettre à l'aise, et j'ai pu réfléchir posément. Ils n'attendent pas une réponse immédiate aux questions, mais des idées et des pistes de réflexions, et ils aident beaucoup dans cette réflexion. Ca c'est donc mieux passé que prévu.

    Pour la préparation, j'ai essentiellement copié Marco (je connaissais mon plan par coeur donc j'ai juste rempli les parties) et j'ai pu écrire la leçon en 1h10, ensuit j'ai refait mes développements (environ 30 minutes) puis j'ai utilisé le temps qu'il me restait pour revoir les démonstrations des propositions de mon plan (je pense que le mieux est de découper la préparation de cette manière, à condition de connaitre plan et développements sur le bout des doigts).

  • Note obtenue :

    10

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    245 : Fonctions holomorphes sur un ouvert de C. Exemples et applications.

  • Autre leçon :

    208 : Espaces vectoriels normés, applications linéaires continues. Exemples.

  • Développement choisi : (par le jury)

    Calcul de l'intégrale de 1/(1+x^6) par les résidus [no ref, no pdf]

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Aucune questions sur le développement.

    Sur le plan/cours:

    1) Pouvez-vous donner une idée de la preuve de la formule de Cauchy?
    Je n'ai pas su répondre (ça commence bien), il faut utiliser le théorème de Cauchy sur les primitives.
    - Vous avez dit que le théorème d'holomorphie sous le signe intégrale donnait un équivalent des théorèmes de continuité et de dérivabilité dans le cas réel. Pouvez-vous expliquer ce que vous vouliez dire, et en quoi il est plus fort ?
    J'ai expliqué que le principe était le même au niveau des hypothèses, mais qu'il était beaucoup plus fort car il suffit de majorer la fonction elle-même (en module) et non pas ses dérivées, mais qu'on obtient quand même le caractère infiniment dérivable et une expression des dérivées $n^{i\grave{e}mes}$ (dû à l'analycité qui donne un contrôle de toutes les dérivées).
    - Avez-vous une idée de la preuve ?
    J'ai expliqué qu'il fallait utiliser la démonstration de [holomorphie implique analytique] qui donne une expression des coefficients du développement en série entière pour une fonction analytique, mais je ne savais pas trop comment ça marchait après.
    - Que pouvez-vous dire d'une fonction entière et dont le module est borné?
    C'est le théorème de Liouville : elle est constante. (dans le plan je n'avais mis que le principe du module maximum et pas le théorème de Liouville).

    Exercices :

    1) On prend $f$ une fonction analytique sur un disque de rayon $R$ et de centre $a$. Que pouvez-vous dire de $f$ ?
    J'ai écrit son développement en série entière, c'est à dire : $f = \sum_{n \geq 0} a_n(z-a)^n$.
    - Prenez un autre point $b$ dans le disque et écrivez le développement en série entière de $f$ autour de $b$. Pouvez-vous exprimer les coefficients de la deuxième série en fonction de la première ?
    J'ai essayé de dériver la première expression, de l'évaluer en $b$. Je ne me souviens plus vraiment mais on s'en sortait à peu près comme ça.

    2) On prend $f$ et $g$ deux fonctions holomorphes sur un ouvert de $\mathbb{C}$ qui contient le disque unité. On suppose que $f$ et $g$ ne s'annulent pas sur le disque, et que $|f|=|g|=1$ sur le disque. Montrer qu'il existe $\lambda \in \mathbb{C}$ tel que $f = \lambda g$ sur le disque.
    Puisque $g$ ne s'annule pas, on peut déjà considérer $h=f/g$ qui est donc holomorphe sur le disque, et de module 1. C'était le début, après je ne me souviens plus de comment on fait, mais avec leurs conseils je suis arrivée au bout.
    - Auriez-vous un contre-exemple à cet exercice ?
    Puisqu'on a supposé que $f$ et $g$ ne s'annulaient pas, j'ai pris $f(z)=z$ et $g(z)=z^2$. Ca marchait.

    3) Auriez-vous un exemple de fonction définie sur $\mathbb{C}$ mais pas holomorphe ?
    On prend $f(z)=\bar{z}$ (ils m'ont largement soufflé l'idée). Ils m'ont demandé d'expliquer: j'ai donc fait le taux d'accroissements et, avec beaucoup de mal, ai réussi à montrer que la limite n'existait pas (on approche $0$ sur la droite de réels et sur la droite des imaginaires pures).

    4) On prend $f$ une fonction non constante sur un ouvert $\Omega$ de $\mathbb{C}$ telle que $|f|$ admette un minimum en $a$ sur $\Omega$. Montrer que $f$ s'annule sur $\Omega$.
    Je n'avais aucune idée. Ils m'ont suggéré un raisonnement par l'absurde, et c'est allé tout seul: on suppose qu'elle ne s'annule pas sur $\Omega$, on considère $1/f$ dont le module admet alors un maximum en $a$ et on utilise le principe du module maximum qui donne que $1/f$ et donc $f$ est constante.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Ils étaient trois (deux hommes et une femme), et ont été vraiment très gentils et bienveillants. La femme ne faisait que me sourire et m'aidait quand je n'avais pas d'idée, un des deux hommes (celui qui posait les questions de cours au début) me souriait aussi mais ne parlait pas beaucoup, et le troisième (celui qui m'a posé la majeur partie des exercices) était moins souriant mais m'aidait aussi quand j'étais en panne d'idée.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais vraiment très peur, car j'ai regretté mon choix au bout d'une dizaine de minutes en me rendant compte que je ne savais presque rien sur les fonctions holomorphes (bon finalement je l'ai quand même eue, comme quoi tout est possible ^^). Je pense que le fait qu'ils aient été vraiment bienveillants (plus que pour l'algèbre, et bien plus que pour la modélisation) a beaucoup aidé à me mettre à l'aise, et j'ai pu réfléchir posément. Ils n'attendent pas une réponse immédiate aux questions, mais des idées et des pistes de réflexions, et ils aident beaucoup dans cette réflexion. Ca c'est donc mieux passé que prévu.

    Pour la préparation, j'ai essentiellement copié Marco (je connaissais mon plan par coeur donc j'ai juste rempli les parties) et j'ai pu écrire la leçon en 1h10, ensuit j'ai refait mes développements (environ 30 minutes) puis j'ai utilisé le temps qu'il me restait pour revoir les démonstrations des propositions de mon plan (je pense que le mieux est de découper la préparation de cette manière, à condition de connaitre plan et développements sur le bout des doigts).

  • Note obtenue :

    10

  • Leçon choisie :

    245 : Fonctions holomorphes sur un ouvert de C. Exemples et applications.

  • Autre leçon :

    208 : Espaces vectoriels normés, applications linéaires continues. Exemples.

  • Développement choisi : (par le jury)

    Calcul de l'intégrale de 1/(1+x^6) par les résidus [no ref, no pdf]

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Aucune questions sur le développement.

    Sur le plan/cours:

    1) Pouvez-vous donner une idée de la preuve de la formule de Cauchy?
    Je n'ai pas su répondre (ça commence bien), il faut utiliser le théorème de Cauchy sur les primitives.
    - Vous avez dit que le théorème d'holomorphie sous le signe intégrale donnait un équivalent des théorèmes de continuité et de dérivabilité dans le cas réel. Pouvez-vous expliquer ce que vous vouliez dire, et en quoi il est plus fort ?
    J'ai expliqué que le principe était le même au niveau des hypothèses, mais qu'il était beaucoup plus fort car il suffit de majorer la fonction elle-même (en module) et non pas ses dérivées, mais qu'on obtient quand même le caractère infiniment dérivable et une expression des dérivées $n^{i\grave{e}mes}$ (dû à l'analycité qui donne un contrôle de toutes les dérivées).
    - Avez-vous une idée de la preuve ?
    J'ai expliqué qu'il fallait utiliser la démonstration de [holomorphie implique analytique] qui donne une expression des coefficients du développement en série entière pour une fonction analytique, mais je ne savais pas trop comment ça marchait après.
    - Que pouvez-vous dire d'une fonction entière et dont le module est borné?
    C'est le théorème de Liouville : elle est constante. (dans le plan je n'avais mis que le principe du module maximum et pas le théorème de Liouville).

    Exercices :

    1) On prend $f$ une fonction analytique sur un disque de rayon $R$ et de centre $a$. Que pouvez-vous dire de $f$ ?
    J'ai écrit son développement en série entière, c'est à dire : $f = \sum_{n \geq 0} a_n(z-a)^n$.
    - Prenez un autre point $b$ dans le disque et écrivez le développement en série entière de $f$ autour de $b$. Pouvez-vous exprimer les coefficients de la deuxième série en fonction de la première ?
    J'ai essayé de dériver la première expression, de l'évaluer en $b$. Je ne me souviens plus vraiment mais on s'en sortait à peu près comme ça.

    2) On prend $f$ et $g$ deux fonctions holomorphes sur un ouvert de $\mathbb{C}$ qui contient le disque unité. On suppose que $f$ et $g$ ne s'annulent pas sur le disque, et que $|f|=|g|=1$ sur le disque. Montrer qu'il existe $\lambda \in \mathbb{C}$ tel que $f = \lambda g$ sur le disque.
    Puisque $g$ ne s'annule pas, on peut déjà considérer $h=f/g$ qui est donc holomorphe sur le disque, et de module 1. C'était le début, après je ne me souviens plus de comment on fait, mais avec leurs conseils je suis arrivée au bout.
    - Auriez-vous un contre-exemple à cet exercice ?
    Puisqu'on a supposé que $f$ et $g$ ne s'annulaient pas, j'ai pris $f(z)=z$ et $g(z)=z^2$. Ca marchait.

    3) Auriez-vous un exemple de fonction définie sur $\mathbb{C}$ mais pas holomorphe ?
    On prend $f(z)=\bar{z}$ (ils m'ont largement soufflé l'idée). Ils m'ont demandé d'expliquer: j'ai donc fait le taux d'accroissements et, avec beaucoup de mal, ai réussi à montrer que la limite n'existait pas (on approche $0$ sur la droite de réels et sur la droite des imaginaires pures).

    4) On prend $f$ une fonction non constante sur un ouvert $\Omega$ de $\mathbb{C}$ telle que $|f|$ admette un minimum en $a$ sur $\Omega$. Montrer que $f$ s'annule sur $\Omega$.
    Je n'avais aucune idée. Ils m'ont suggéré un raisonnement par l'absurde, et c'est allé tout seul: on suppose qu'elle ne s'annule pas sur $\Omega$, on considère $1/f$ dont le module admet alors un maximum en $a$ et on utilise le principe du module maximum qui donne que $1/f$ et donc $f$ est constante.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Ils étaient trois (deux hommes et une femme), et ont été vraiment très gentils et bienveillants. La femme ne faisait que me sourire et m'aidait quand je n'avais pas d'idée, un des deux hommes (celui qui posait les questions de cours au début) me souriait aussi mais ne parlait pas beaucoup, et le troisième (celui qui m'a posé la majeur partie des exercices) était moins souriant mais m'aidait aussi quand j'étais en panne d'idée.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'avais vraiment très peur, car j'ai regretté mon choix au bout d'une dizaine de minutes en me rendant compte que je ne savais presque rien sur les fonctions holomorphes (bon finalement je l'ai quand même eue, comme quoi tout est possible ^^). Je pense que le fait qu'ils aient été vraiment bienveillants (plus que pour l'algèbre, et bien plus que pour la modélisation) a beaucoup aidé à me mettre à l'aise, et j'ai pu réfléchir posément. Ils n'attendent pas une réponse immédiate aux questions, mais des idées et des pistes de réflexions, et ils aident beaucoup dans cette réflexion. Ca c'est donc mieux passé que prévu.

    Pour la préparation, j'ai essentiellement copié Marco (je connaissais mon plan par coeur donc j'ai juste rempli les parties) et j'ai pu écrire la leçon en 1h10, ensuit j'ai refait mes développements (environ 30 minutes) puis j'ai utilisé le temps qu'il me restait pour revoir les démonstrations des propositions de mon plan (je pense que le mieux est de découper la préparation de cette manière, à condition de connaitre plan et développements sur le bout des doigts).

  • Note obtenue :

    10

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.
    Remarque: la préparation c’est plutôt 2h40, pour écrire le plan et on a 5-10mins sans le plan (parti à l’impression) pour finir de réviser les dvpmts (par exemple)

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.
    Remarque: la préparation c’est plutôt 2h40, pour écrire le plan et on a 5-10mins sans le plan (parti à l’impression) pour finir de réviser les dvpmts (par exemple)

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.
    Remarque: la préparation c’est plutôt 2h40, pour écrire le plan et on a 5-10mins sans le plan (parti à l’impression) pour finir de réviser les dvpmts (par exemple)

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.
    Remarque: la préparation c’est plutôt 2h40, pour écrire le plan et on a 5-10mins sans le plan (parti à l’impression) pour finir de réviser les dvpmts (par exemple)

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.
    Remarque: la préparation c’est plutôt 2h40, pour écrire le plan et on a 5-10mins sans le plan (parti à l’impression) pour finir de réviser les dvpmts (par exemple)

  • Note obtenue :

    15.25

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Polynômes irréductibles sur Fq

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    -commenter le résultat de mon développement (proba qu’un polynôme unitaire dans Fq pris au hasard soit irréductible)
    -Pourquoi le cardinal d’un corps fini est nécessairement une puissance d’un nombre premier ?
    -Comment on construit un corps fini ?
    -Sur certains exemples trouver le polynôme minimal
    -Déterminer le polynôme minimal de u+v connaissant ceux de u et de v (exo classique voir Ortiz) (une méthode avec le résultant existe si on travaille sur Q, cf Rombaldi)
    -Retrouver le degré d’une extension (2 exos dont un qui utilisait l’irred des polynômes cyclotomiques)
    -Démo du thm de l’element primitif en carac finie puis en carac 0 (en carac nulle je connaissais le résultat mais pas la démo le jury est passé à une autre question)

    L’autre dvpmt consistait à montrer que l’anneau des nbres algébriques est un corps (cf Perrin), j’avais hésité avec l’etude des polynômes cyclotomiques.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, un des membres augmentait le tempo pour me déstabiliser et me tendait qqes pièges mais il y a eu un vrai échange et un peu d’aide parfois quand c’etait utile. Rythme assez rapide concernant l’enchainement des questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Oui, questions très classiques et assez prévisibles. J’ai eu le temps de faire qqes exos durant la préparation qui m’ont bien servi, si vous pouvez prendre 10 mins pour lire des exos (Dans le Ortiz c’est tout indiqué pour cette leçon) c’est vraiment rentable.
    Remarque: la préparation c’est plutôt 2h40, pour écrire le plan et on a 5-10mins sans le plan (parti à l’impression) pour finir de réviser les dvpmts (par exemple)

  • Note obtenue :

    15.25

  • Leçon choisie :

    209 : Approximation d’une fonction par des polynômes et des polynômes trigonométriques. Exemples et applications.

  • Autre leçon :

    261 : Loi d’une variable aléatoire : caractérisations, exemples, applications.

  • Développement choisi : (par le jury)

    Équation de la chaleur sur le cercle

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Question sur le développement :

    Que peut-on dire du comportement de la solution en temps infini? On note f la température initiale. On montre que l'unique solution obtenue u(t,x) converge uniformément pour x dans [0,2pi] vers c_0(f) (la moyenne de f sur la barre) lorsque t tend vers l'infini.

    Questions, exercices :

    — Soit f ∈ C∞(R) telle qu’il existe un polynôme P de degré impaire vérifiant pour tout entier m et tout réel x : |f(m)(x)|≤|P(x)|. Que peut-on dire de f ? Réflex : P possède une racine x0. On obtient f(m)(x0)=0 pour tout m. Soit x réel. La formule de Taylor reste intégral à l’ordre m entre x0 et x permet d'avoir la majoration |f(x)|≤ |x−x0|^(m+1) / m! ||P||∞ qui converge vers 0 lorsque m tend vers l'infini. Conclusion : f est nulle.
    — Soit f ∈ C1([0,1]). Peut-on trouver une suite de polynômes (Pn) telle que Pn → f et Pn' → f' uniformément sur [0,1] ? J’ai proposé des pistes qui n’aboutissaient pas. Le jury m’a beaucoup aidé. Il suffisait de considérer (Qn) suite de polynômes convergeant vers f' uniformément sur [0,1]. Puis d’introduire Pn la primitive de Qn valant f(0) en 0, de sorte que Pn' = Qn est un polynôme. Et, par convergence uniforme de (Qn) vers f', on a effectivement Pn → f uniformément.
    — Expliquez-nous le théorème de Chudnovsky pour [a,b] ne contenant pas d’entier. Le jury est sympa. Pour me racheter, il me demande un théorème de mon plan. C’est mon troisième développement pour cette leçon. Je leur explique la preuve que l’on trouve dans le FGN Analyse 2.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury bienveillant. Il faut absolument entretenir un dialogue entre vous et le jury. Même si vous bloquez, n'hésitez pas à lui proposer des pistes de réflexions, il vous guidera ensuite.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Préparation :

    Pendant la préparation, je commence par réécrire mes développements (environ 45 min). Cela me permet de mettre ensuite dans mon plan les propriétés importantes intervenants dans les deux preuves. Il est préférable d’assurer 15 min de sa présentation que de vouloir rajouter une nième propriété que le jury ne lira sans doute pas. Ensuite, j’écris et j’apprends les preuves de mon plan pendant 2h. Puis il me reste un peu moins de 10 min pour relire mes développements, le temps qu’ils fassent les photocopies. Pour la défense du plan, je rédige les deux premières phrases qui me permettront de me lancer devant le jury. Je termine d’y réfléchir entre la salle de préparation et la salle de passage.

    Passage :

    Lors de la défense du plan, mettez-y du cœur et utilisez le tableau. J'ai l'impression que c'est très apprécié.
    Développement réalisé en 15 min pile sur un grand tableau à craie. Quand on a bien répété nos dev il n'y a pas de surprise à avoir, notamment sur les questions. Si vous choisissez tel ou tel dev, aucun doute ne doit transparaître lors de la présentation. Pendant l'année, faites les questions / exercices associés à vos dev.
    Dans mon plan j'ai parlé d'analyse complexe et du théorème de Runge et aussi (bien sur) de série de Fourier, de polynômes trigonométrique ... Aucune questions sur ces sujets. Le jury a préféré rester sur une approximation polynomiale sur des segments de R. Que ce soit sur les questions ou les exercices, on est resté sur du basique.

  • Note obtenue :

    17.25

  • Sujet du texte choisi :

    A47 (?)

  • Sujet de l'autre texte :

    A79 (?)

  • Un petit résumé du texte :

    Soit un graphe enraciné. On considère un objet qui se balade dans le graphe comme ceci : s'il est à un sommet au temps n, il part en suivant une des arêtes qui partent du sommet en la choisissant de manière uniforme pour arriver à un autre sommet au temps n+1. La modélisation du déplacement de l'objet se fait par une chaîne de Markov. On se place à la racine du graphe, et on observe les temps auxquels l'objet revient à la racine. On essaie de trouver des informations à partir de ces temps sur le graphe. Après l'introduction, il y avait 4 parties qui étudiaient pour les 3 premières des valeurs reconstructibles du graphe (c'est-à-dire une valeur qui peut se retrouver uniquement grâce à la loi des temps de retour), et la dernière qui montrait que les multiplicités des valeurs propres de la matrice de transition n'étaient pas reconstructibles.

  • Qu'avez vous produit durant la préparation ? (plan, code, dessins, preuves, ...)

    J'ai traité la 1ère et la 3ème parties, ce qui était trop pour moi puisque je n'ai pas eu le temps de présenter la démonstration que j'avais préparé (qui était la preuve d'un estimateur avec un intervalle de confiance pour une valeur reconstructible)
    Pour ce qui est des programmes, j'ai montré la convergence d'un estimateur vers une valeur reconstructible pour 2 graphes différents ; j'ai essayé de rajouter l'intervalle de confiance (donné par le sujet et obtenu par application du TCL) qui se réduit petit à petit mais je n'ai pas réussi à le programmer, ce que j'ai dit au jury.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Les questions étaient exclusivement des questions soit de cours (entre autres : énoncer la propriété de Markov forte, définition d'un temps d'arrêt, définition d'une filtration, comment simuler une marche aléatoire sur un graphe, définition du biais d'un estimateur, lien entre l'espérance du temps de 1er retour avec la proba invariante, théorème ergodique pour les chaînes de Markov, condition pour la convergence en loi d'une chaîne de Markov vers sa proba invariante), soit de calculs simplistes (calcul d'espérance d'une somme de v.a., calcul d'un produit mesure*matrice de transition). J'ai eu un peu de mal à redonner toutes ces définitions, mais en tatonnant plus ou moins, et avec leur rhétorique, j'ai pu toutes les retrouver.

  • Suite à la présentation, qu'est ce qui vous semblait améliorable ? (plan, gestion du temps, choix des résultats présentés, ...)

    J'aurai dû me restreindre à traiter la 1ère partie du texte pour pouvoir présenter la démonstration que j'avais préparée, et réorganiser ma 1ère partie pour en faire 2 à la place d'une seule, ce qui m'aurait permis de faire un plan en 3 parties quand même.

  • Quelle a été l'attitude du jury (muet/aide/cassant) durant les questions ?

    Un homme qui était motivé et intéressé par l'oral, un autre qui parlait un peu vite et dans sa barbe, une dame qui avait du mal à suivre, et une autre dame qui n'est pas ou presque pas intervenue.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    12.75

  • Leçon choisie :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Autre leçon :

    162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.

  • Développement choisi : (par le jury)

    Théorème spectral

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Beaucoup de questions sur le développement issue du Gourdon, Algèbre, puis sur des démonstrations de théorèmes du plan.
    Question sur la différence entre la définition d'ellipses du Rombaldi et du Bernis puis le jury a demandé de tracer quelques exemples d'ellipses dans le plan.
    Question sur les formes quadratiques définies, dégénérées à l'aide d'un exercice puis sur la réduction de Gauss de xy + yz + zx et questions sur le critère de Sylvester.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury a été bienveillant

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Préparation difficile dû à une chaleur élevé dans les salles de préparation
    La préparation est raccourcie de 5 min pour aller chercher les livres.

  • Note obtenue :

    7.75

  • Leçon choisie :

    239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.

  • Autre leçon :

    220 : Equations différentielles $X'=f(t,X)$. Exemples d'étude des solutions en dimension 1 et 2.

  • Développement choisi : (par le jury)

    La formule de Stirling

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Quelques questions en lien avec les probabilités ( fonction caractéristique, convolé de lois)
    Questions sur les idées de la démonstration du théorème de convergence dominée puis la démonstration du lemme de Fatou
    Résoudre l'équation f*f=f pour f dans L1(R) et * le produit de convolution,j'ai eu besoin d'une indication pour conclure.
    Calculer la transformée de Fourier de 1/(1+x^4) à l'aide des résidus, ce que je n'ai pas réussi à faire.
    Donner la continuité d'une fonction définie par une intégrale réelle dont les bornes varient à une intégrale sur un compact par changement de variables et utilisation du théorème de continuité sous le signe somme.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury bienveillant et qui m'a laissé un peu de temps pour chercher à chaque questions

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    9

  • Leçon choisie :

    241 : Suites et séries de fonctions. Exemples et contre-exemples.

  • Autre leçon :

    228 : Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.

  • Développement choisi : (par le jury)

    Théorème de Fejer

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    J'étais quasiment à la fin de mon développement lorsque le jury m'a indiqué que le temps était déjà écoulé, et m'a proposé de conclure. J'ai ainsi pu finir. J'ai eu le droit à plusieurs questions sur mon développement, que ce soit pour revenir sur des points que j'avais énoncés rapidement à l'oral, pour avoir plus de précision sur des théorèmes que j'utilisais, ou pour démontrer des points que j'avais admis initialement par manque de temps.
    Il y a eu ensuite une bonne vingtaine de minutes de questions sur mon plan, principalement sur les exemples que j'avais donnés. Il vaut mieux donc bien connaître la démonstration des exemples qu'on cite. Voici les différentes questions que j'ai eues:

    Q: Quels éléments de votre développement vous garderiez dans le cas où f est C1 par morceaux?
    Q: Vous citez Hölder à un moment, vous l'appliquez à quelles fonctions?
    Q: Comment montrez-vous que Dn (noyau de Dirichlet) et Kn (noyau de Fejer) ont cette forme?
    Q: Comment montrez-vous que l'intégrale de Dn vaut 1? Par la formule sin(..) ?
    Q: Vous dites que la limite de x^n sur [0,1] n'est pas continue donc il n'y a pas convergence uniforme, mais comment on montrerait le résultat sans les théorèmes de continuité?
    Q: Vous avez dit qu'une fonction continue et périodique était uniformément continue, pourquoi?
    Q: Votre autre développement parlait de la densité des polynômes dans C([a,b]), y a t'il encore cette densité si nous ne sommes plus sur un segment? Quel est alors l'adhérence des fonctions polynomiales dans R?

    Exercice: On définit S(x) = Somme(n=1 à inf (-1)^n / (n+x)).
    Q: Donner l'ensemble de définition de S
    Q: Montrer sur S est dérivable sur ]-1, inf[
    Q: Quelle est la limite de S en -1. Comme je ne trouvais pas, le jury m'a suggéré d'utiliser le fait que la série soit alternée

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était très gentil, les questions s'enchainaient mais je n'ai jamais senti de pression durant cet oral. Un des membres semblait agréablement surpris qu'il y ait une sous-partie sur les séries de Fourier. Le jury aide, mais n'en dit pas trop, ils veulent voir les différentes réflexions qu'on peut avoir avec une petite indication.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Mieux que je ne le pensais. Il y avait 3 spectateurs mais on ne se rend pas du tout compte de leur présence. J'avais beau connaître plutôt bien le plan de cette leçon j'ai fini de l'écrire au bout des 2H45, avec moins de précision sur les derniers théorèmes que j'écrivais.

  • Note obtenue :

    12.75

  • Leçon choisie :

    152 : Déterminant. Exemples et applications.

  • Autre leçon :

    Pas de réponse fournie.

  • Développement choisi : (par le jury)

    Déterminant de Gram et inégalités d'Hadamard [no ref, no pdf]

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Quelques questions autour du développement, sur des passages où j'ai été un peu rapide en laissant les calculs de côté. Et une petite bêtise que j'avais écrit dans un des lemmes du développement et dont la preuve (bonne) ne correspondait pas à ce que je voulais montrer.
    Pas trop de questions sur le plan, plutôt des exercices.
    Un développement de déterminant, une application sur Mn(Z), applications dans le plan R2 et applications en lien avec le développement.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était globalement sympathique, il aidait si besoin et pas du tout cassant. Il faut dire que c'était durant la semaine de la canicule et que les épreuves étaient éprouvantes pour tout le monde.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de surprise particulière dans le déroulement. Attention 3h c'est très court, même si je connaissais mon plan et mes développements, on a peu de temps pour tout écrire. Mon objectif était d'obtenir la moyenne, en ce sens, maîtriser son plan son développement et répondre à quelques questions m'ont assuré du résultat.

  • Note obtenue :

    10