Retours d'oraux

Des retours d'expériences des années précédentes.

Liste des retours de l'année 2020 :

  • Leçon choisie :

    121 : Nombres premiers. Applications.

  • Autre leçon :

    160 : Endomorphismes remarquables d’un espace vectoriel euclidien (de dimension finie).

  • Développement choisi : (par le jury)

    Théorème de Dirichlet faible

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    - Vous dites que Z[X] n'est pas euclidien, mais qu'on peut quand même faire une division euclidienne avec ce polynôme. Expliquer.
    - A-t-on toujours unicité de cette "décomposition euclidienne" ?
    - Vous avez précisé que vous pouvez appliquer cette égalité de polynômes car les "racines sont simples", expliquez. (un détail qui manquait de précision dans mon dev pour montrer que X^n-1 = produit des phi_d)
    - Calculer phi_6 (utiliser la formule précédente et tripatouiller un peu pour trouver phi_6(X) = 1-X+X²
    - Montrer que les triangulaires supérieures à diagonale unité forment un p-Sylow de GL_n(F_p) (c'était dans mon plan)
    - Existe-t-il un corps à 10 éléments ?
    - 17 est-t-il un carré modulo 41 ? (j'ai pris l'initiative de montrer que 41 était bien premier avant, puis avec la réciprocité quadratique, c'était tout bon)
    - Posons p=41. Ecrivez F_41² comme quotient de F_41 par quelque chose (direct avec la question précédente: X²-17 est irréductible car 17 n'est pas un carré modulo 41)
    - Montrer qu'il existe une infinité de nombres premiers congrus à 5 modulo 6 (poser n = 6 p_1 ... p_n + 5 si il y en a un nombre fini, et décomposer n en produit de nombres premiers, en remarquant que ces nombres premiers sont tous congrus à 1 modulo 6).
    - La dernière était était bizarre, et j'avais absolument aucune idée. Il m'a demandé s'il y avait "beaucoup" de nombres premiers à 10 chiffres. L'oral s'est terminé là-dessus.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Très souriant et sympathique, en particulier celui du milieu qui semblait "diriger" la séance. Les deux autres étaient un peu plus muets et distants.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    A part le fait que j'ai réalisé cet oral sur un tableau blanc (d'autant que les trois quarts de ces foutus feutres n'avaient plus d'encre), tout s'est bien passé.

  • Note obtenue :

    15.75

  • Leçon choisie :

    253 : Utilisation de la notion de convexité en analyse.

  • Autre leçon :

    235 : Problèmes d’interversion de limites et d’intégrales.

  • Développement choisi : (par le jury)

    Projection sur un convexe fermé

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    - Dessinez ce que représente la caractérisation du projeté avec le produit scalaire dans le plan.
    - Vous dites que Ker(f) est fermé car f est une forme linéaire continue. Que se passe-t-il si f n'est pas supposée continue ? (il est dense dans H)
    - On travaille dans un espace vectoriel E quelconque, et on prends F de dimension finie. On prends F sev fermé. Le théorème s'applique-t-il toujours ? A-t-on toujours E = F (+) F^orthogonal ? (Le théorème ne s'applique pas puisque nous ne sommes pas dans un espace de Hilbert, mais le théorème reste vrai en prenant par exemple une base orthogonale de F et en caractérisant le projeté à l'aide du produit scalaire).
    - On admet l'inégalité, pour a et b réels, (|a|^4 + |b|^4)/2 - |(a+b)/2|^4 |>= |a-b|^4 / 16 (se démontre à la main avec le binôme). Montrez que l'existence du projeté sur un convexe est toujours vrai dans L^4 malgré le fait que ce dernier ne soit pas un Hilbert.
    Pour cela, on prends un convexe fermé C de L^4, et, comme pour la projection sur un convexe fermé, on prends (f_n) une suite minimisante la distance de f à C. Supposons dans un premier temps f = 0. On montre, puisque L^4 est complet par Riesz-Fisher, que (f_n) est de Cauchy, ce qui est direct par l'inégalité admise précédemment (en remarquant que |(f_p + f_q)/2|^4 =< d^4). Donc (f_n) converge, et on a la conclusion. Dans le cas général, on fait pareil, mais avec la suite g_n = f_n - f.
    - On considère l'ensemble E des fonctions de L² positives presque partout. Que dire de cet ensemble ? (il est convexe et fermé: convexe, c'est direct, fermé il faut introduire les ensembles induits par le "presque partout", et on utilise notamment le fait que si (f_n) converge dans L² vers f, on a une sous-suite qui converge presque partout). Le théorème de projection s'applique donc. Pour f un élément de L², quel est son projeté ? (le projeté est f_+ = max(0,f), ceci se prouve directement à l'aide de la caractérisation du projeté).
    - Soit K un compact de E evn. On pose E l'ensemble des x tels que pour tout f forme linéaire sur E, f(x) =< sup_K (f). Que peut-on dire sur E ? (c'est un convexe fermé).
    Il devait y avoir une suite à cet exercice, mais mon oral s'est terminé là-dessus.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Plutôt distant, sans forcément être froid. Ils n'ont pas hésités à m'indiquer si mon intuition ou si mes pistes étaient intéressantes, afin de m'encourager à poursuivre dans cette direction.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    L'oral s'est déroulé normalement (à part le fait que j'ai fais mon oral sur un tableau blanc).
    La note me semble curieuse, car je ne vois pas du tout comment j'aurais pu améliorer mon oral, mais bon. Je vais pas m'en plaindre hein !

  • Note obtenue :

    15.75

  • Sujet du texte choisi :

    Algèbre linéaire. Méthodes itératives. (B32)

  • Sujet de l'autre texte :

    Equations différentielles ordinaires. Comportement qualitatives des solutions (B57 je crois)

  • Un petit résumé du texte :

    Le texte visait à étudier un peu la notoriété d'une entreprise. On introduisait pour cela, pour un consommateur, son opinion sur l'entreprise, et on suppose que l'opinion d'une personne corresponds à la moyenne de celles de son voisinage, plus un paramètre de publicité provenant de l'entreprise. On en vient alors à résoudre un système linéaire (qui fait notamment intervenir la matrice de discrétisation du laplacien), et le texte proposait d'utiliser une méthode de Jacobi relaxée. Afin d'améliorer la vitesse de convergence de cet algorithme, on procédait à une sorte d'échantillonnage du résidu qui se "comportait bien" après quelques itérations de Jacobi.

  • Qu'avez vous produit durant la préparation ? (plan, code, dessins, preuves, ...)

    J'ai produit un plan en trois parties où je traite intégralement le texte (sauf l'analyse de la convergence du tout dernier algorithme, qui prenait plus d'une page, donc non merci). En terme de code, j'ai rédigé exactement 155 lignes de code sur Python, pour trois programmes indiquant chacun des graphes qu'on voyait déjà dans le texte. J'ai donné mon petit plus par rapport au texte en parlant des méthodes itératives (le texte ne parlait que de la méthode de Jacobi relaxée), et ai montré la convergence indépendamment du texte en calculant le rayon spectral de M-1N.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    - Le résidu comme critère d'arrêt vous semble-t-il intéressant ? (j'ai répondu qu'il fallait estimer l'erreur ||x_k - x|| où x est la solution, on m'a amené à faire le calcul. Les erreurs relatives font notamment apparaître le conditionnement de la matrice A, qu'on calcule, et on montre que pour N très grand, le conditionnement est très grand, ce qui fait que pour de grandes valeurs de N, le conditionnement de la matrice est dégueulasse).
    - On m'a demandé comment j'ai fais un certain graphique. J'ai montré mon code en expliquant son fonctionnement.
    - Dans notre contexte, on avait un quartier où des voisins communiquaient entre eux. Que se passe-t-il si on suppose ce quartier circulaire ? (cela change la matrice du Laplacien: les deux 2 aux extrémités de la diagonale deviennent 1. On obtient une matrice certes toujours positive, mais plus inversible puisque le vecteur avec que des 1 est dans son noyau).
    - Que proposez-vous pour résoudre ce problème ? (Méthode des moindres carrés. On me demande alors d'expliquer, et j'explique en donnant les équations normales. L'un du jury voulait que je retrouve les équations normales, je parle de la SVD, et le jury confirme effectivement que c'est une façon de voir, mais il préférait le voir d'une autre façon: après avoir réécris le min, je dis qu'il s'agit d'un théorème de projection).
    - A quelle condition a-t-on unicité de la solution des moindres carrés ? (rang de la matrice transpose(A)A maximale).
    - Comment se comportent les matrices R et E dans le texte ? (j'ai juste recopié les formules du texte, que je n'avais pas réécris au tableau).

  • Suite à la présentation, qu'est ce qui vous semblait améliorable ? (plan, gestion du temps, choix des résultats présentés, ...)

    Le seul point que j'aurais voulu améliorer, c'est ma façon de répondre trop rapidement aux questions. J'ai dis plusieurs bourdes à l'oral sous le coup du stresse, mais me suis néanmoins corrigé seul à chaque fois après que le jury m'ait fait remarquer ce genre de choses.
    A part ça, je suis très satisfait de ma présentation et de mes codes.

  • Quelle a été l'attitude du jury (muet/aide/cassant) durant les questions ?

    Parmi les 4, il y en avait qu'un seul qui était vraiment actif. Le jury juste à côté participait parfois, et les deux autres étaient totalement silencieux. A part cela ils étaient plutôt sympa, et celui qui parlait le plus était souriant, même s'il faisait des grimaces un peu inquiétantes quand je disais des bourdes.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'ai été surpris, mais agréablement. Déjà, la préparation du texte ne dure pas exactement 4h, mais plutôt 3h50, pour pouvoir faire le transfert de fichier et changer de salle. Le transfert de fichier est immédiat, et quand je suis arrivé dans la salle, un des membres du jury s'est occupé lui-même de se connecter sur ma session, pendant qu'un autre m'expliquait les modalités de l'épreuve, ce qui fait que je n'ai pas eu à me battre avec le pc.

  • Note

    20

  • Leçon choisie :

    214 : Théorème d’inversion locale, théorème des fonctions implicites. Exemples et applications en analyse et en géométrie.

  • Autre leçon :

    223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.

  • Développement choisi : (par le jury)

    Théorème des fonctions implicites [no pdf]

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    1) Questions sur le dev (théorème des fonctions implicites)
    - Vérification que j'avais compris le calcul d'une différentielle dans mon dev
    - Pourquoi on pouvait "deviner" que la différentielle de la fonction implicite était de la forme proposée dans l'énoncé du théorème
    - Pourquoi l'application qui à une matrice inversible associe son inverse est continue?

    2) Questions sur le plan
    - Et si dans le théorème des fonctions implicites on suppose que $f$ est plus régulière (par exemple de classe $C^k$), est ce qu'on a plus de régularité sur la fonction implicite $\phi$? ($\phi$ est de classe $C^k$ d'après l'expression de sa différentielle)
    - Justifier pourquoi exp (matricielle) est un difféomorphisme local en $0_n$ (classique)
    - Montrer que exp (matricielle) est dérivable partout (utiliser les théorème de dérivation des séries de fonctions)
    - Qu'est ce qu'un difféomorphisme global, quel est le lien avec les difféomorphismes locaux?
    - Donner un exemple de difféomorphisme local non difféomorphisme global (l'application $z \mapsto z^2$ où $z \ne 0$ est vu comme un complexe)
    - Illustrer le théorème des extremas liés par une figure (j'ai bidouillé une figure, ce n'était pas très convainquant, on est passé à la suite)

    3) Exercices
    - Soit $f$ une application $\mathbf{R}^n \to \mathbf{R}^n$ de classe $C^1$ telle que $\forall x \in \mathbf{R}^n, \forall y \in \mathbf{R}^n, ||f(x)-f(y)|| \geq ||x-y||$. Montrer que $f$ est un difféomorphisme global de $\mathbf{R}^n$ sur $\mathbf{R}^n$ (injectivité évidente, montrer que f est un difféomorphisme local en vérifiant que la différentielle est injective, en déduire que l'image de $f$ est ouverte, vérifier l'image est complète par des suites de Cauchy donc fermée, et enfin conclure que l'image est $\mathbf{R}^n$ tout entier par connexité)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Attitude neutre, un tout petit peu d'aide

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Première fois que je présentais un résultat sur un tableau (candidat libre), j'ai rédigé de façon assez brouillonne le dev.

  • Note obtenue :

    19

  • Leçon choisie :

    157 : Endomorphismes trigonalisables. Endomorphismes nilpotents.

  • Autre leçon :

    104 : Groupes abéliens et non abéliens finis. Exemples et applications.

  • Développement choisi : (par le jury)

    Connexité par arcs dans les matrices nilpotentes (privées de la matrice nulle) [no pdf]

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    1) Questions sur le dev
    - Plusieurs questions pour préciser les objets introduits dans la démonstration (je crois qu'ils n'ont pas vraiment compris le dev, la faute à une présentation un peu brouillonne)
    - Pourquoi l'application qui à $M$ associe $M^n$ est continue?
    - Pourquoi $GL_n^{+}(\mathbf{R})$ est connexe par arcs? (que j'avais admis pour le dev)
    - Pourquoi l'application qui à une matrice inversible associe son inverse est continue? (utiliser la formule de la comatrice)

    2) Questions sur le plan
    - Faire le lien entre les noyaux itérés et l'ordre de nilpotence d'un endomorphisme nilpotent
    - Soit E un espace vectoriel de dimension finie, $u$ un endomorphisme trigonalisable qui stabilise le drapeau $F_i$ et $g$ un isomorphisme. Quel est le drapeau stabilisé par $g \circ u \circ g^{-1}$? (c'est le drapeau $g(F_i)$). Quel est le principe très général derrière ce résultat? (c'est un résultat sur les stabilisateurs d'une action de groupe)
    - Est ce qu'il existe des matrices non trigonalisables dans $M_n(F_q)$ (une matrice est trigonalisable ssi son polynôme caractéristique est scindé, il suffit de choisir un polynôme $P$ de degré n qu'on ne peut pas scinder dans $F_q[X]$ et on considère la matrice compagnon de $P$)

    3) Exercices
    - Soit $u$ un endomorphisme. Trouver l'ensemble des polynômes en $u$ qui sont nilpotents (si $\mu_u$ est le polynôme minimal de $u$ et $\mu_u = {P_1}^{\alpha_1} {P_2}^{\alpha_2}... P_k^{\alpha_k}$ est sa décomposition en éléments irréductibles de $K[X]$ alors l'ensemble de nilpotents de $K[u]$ est l'ensemble des multiples de $P_1 P_2 ... P_k$)
    - Trouver la dimension maximale d'un sev de $M_n(K)$ constitué de matrices nilpotentes (c'est $d = n(n-1)/2$, exhiber le sev des matrices triangulaires supérieures de diagonale nulle de dimension $d$, et montrer par un argument de dimension que s'il existait un sev de matrices nilpotentes de dimension strictement supérieure à $d$, il intersecterait de façon non triviale l'ensemble des matrices symétriques ce qui est absurde, puisqu'une matrice symétrique et nilpotente est nulle)
    - On suppose $K = \mathbf{C}$. Montrer que $u$ est diagonalisable ssi le seul polynôme en u nilpotent est l'endomorphisme nul (j'ai séché sur celle là).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Un peu d'aide, neutres.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    17

  • Leçon choisie :

    159 : Formes linéaires et dualité en dimension finie. Exemples et applications.

  • Autre leçon :

    125 : Extensions de corps. Exemples et applications.

  • Développement choisi : (par le jury)

    Espace tangent et extrema liés

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Je suis passé en 2021, pas en 2020 mais le site ne permet pas d'effectuer de retour pour cette année au moment où je l'écris.

    Questions sur le développement :
    1) réexpliquer le lemme sur les formes linéaires nécessaire à la démonstration du théorème
    2) ce dernier est-il toujours vrai si les formes linéaires ne sont pas indépendantes ?
    3) exemple ou l'espace tangent n'est pas un espace vectoriel ? Je n'en avais aucune idée donc le membre du jury m'a demandé de considérer un lemniscate, et notamment où ça clochait (le point du centre ne permet pas de créer un C1 difféomorphisme dans son voisinage, problème d'injectivité)

    Autres questions :
    1) donner un exemple où la famille duale n'est pas une base (prendre R[X], la base des (X^n) et la forme linéaire P -> P(1) )
    2) faire l'application des extrema liés à la quadrique (voir mon plan, c'est dans le PGdCD de Rouvière)
    3) quel rapport entre la leçon et la différentielle ?
    4) déterminer le gradient du déterminant (je ne suis pas allé au bout, mais j'ai plus ou moins compris que c'était la comatrice)
    5) l'application M -> Phi_M : X -> Tr(XM) est un isomorphisme de M_n(R) vers son dual. Quelle est sa norme (M_n(R) est muni de la norme de Frobenius) ? (c'est une isométrie)

    --- u est maintenant un endomorphisme d'un ev de dimension finie --

    6) rapport entre Frobenius et les formes linéaires ? "Démontrer" la partie où il existe un supplémentaire stable au sous espace engendré par un vecteur u-maximal. Ils voulaient juste la formule que l'on peut trouver dans le livre de G. Berhuy : Algèbre, le grand combat tout en haut de la page 1020 (deuxième édition)
    7) démontrer l'existence d'un vecteur u maximal

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était extrêmement poli, courtois, me disait une petite phrase lorsque visiblement je n'avançais pas ou que j'allais faire une grosse c***rie alors que j'étais près du but.

    Surtout réfléchir à vois haute qu'ils voient bien où ça coince pour qu'ils vous débloquent (enfin, s'ils ont envie...).

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Rien à signaler, organisation absolument impeccable.

  • Note obtenue :

    18.75

  • Leçon choisie :

    233 : Analyse numérique matricielle. Résolution approchée de systèmes linéaires, recherche d’éléments propres, exemples.

  • Autre leçon :

    229 : Fonctions monotones. Fonctions convexes. Exemples et applications.

  • Développement choisi : (par le jury)

    Algorithme du gradient à pas optimal

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Je suis passé en 2021, pas en 2020 mais le site ne permet pas d'effectuer de retour pour cette année au moment où je l'écris.

    Questions sur le développement :
    1) réexpliquer pourquoi si un vecteur annule le gradient de la fonctionnelle quadratique, alors c'est le point de minimum
    2) prouver la coercivité et la stricte convexité de la fonctionnelle quadratique
    3) l'inégalité de Kantorovich est-elle optimale ? (oui : si on prend une homothétie de rapport positif)
    4) quand veut-on utiliser cet algorithme plutôt qu'une résolution directe style pivot de Gauss ? Discussion sur la complexité du pivot de Gauss et celle du gradient optimal.
    5) Combien de fois désire-t-on appliquer l'algorithme ? J'ai répondu que vu qu'il avait une complexité en O(n²) contre O(n^3) pour Gauss, au maximum n fois. Ce n'était visiblement pas la réponse attendue par M. Gonnord, mais au moins c'était logique...
    6) Quelle précision souhaite-t-on obtenir sur l'estimation du point de minimum ? (je n'ai pas su répondre)

    Autre questions (dans le désordre):
    1) démontrer le théorème de Gershgorin-Hadamard
    2) Pourquoi la norme de Frobenius n'est pas une norme subordonnée ?
    3) D'où sort la matrice du Laplacien 1D (j'ai redonné l'équation -u'' = f(t) avec comme conditions initiales u(0) = u(1) = 0, dit que l'on découpait [0,1] en n+1 intervalles puis qu'on appliquait la méthode des différences finies, on ne m'a pas demandé de l'expliciter)
    4) en admettant les valeurs propres du L1D, calculer son conditionnement en norme 2. Comme celui-ci (qui est en n²) tend vers +inf, on m'a demandé si je connaissais d'autres matrices qui auraient un pire conditionnement. Je ne savais pas, mais M. Gonnord m'a dit à la toute fin de l'oral d'aller voir du côté des matrices de Hilbert

    A ce moment là on m'a dit que l'oral était terminé, mais M. Gonnord m'a subitement dit que je n'avais pas parlé de conditionnement de recherche d'éléments propres, et demandé comment on faisait.
    Je lui ai donc parlé du théorème de Bauer-Fike en essayant d'expliquer ça le plus proprement possible.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était composé de deux hommes (dont M. Gonnord) et d'une femme. Ils ont été remarquablement polis et courtois, et la dame avait des yeux d'une extrême gentillesse qui mettait vraiment en confiance.

    M. Gonnord est très incisif, direct, mais très bienveilant.

    Vraiment un jury remarquable.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    C'est une leçon très particulière, je ne connaissais rien à l'analyse numérique matricielle quelques mois auparavant donc je ne savais vraiment pas à quoi m'attendre.

    Au final, c'est comme toutes les épreuves de l'agreg : le jury veut voir si vous comprenez ce que vous avez écrit dans votre plan, si vous avez de la marge autour des notions abordées (ce n'était pas mon cas sur cette leçon), et surtout vous voir réfléchir.

  • Note obtenue :

    19.25

  • Leçon choisie :

    103 : Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications.

  • Autre leçon :

    151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Développement choisi : (par le jury)

    Simplicité du groupe alterné An

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le jury commence par me poser des questions sur le développements:
    * Réexpliquer pourquoi dans $\mathcal{A}_5$, si a est un $5$-cycle alors un autre $5$-cycle est conjugué de a ou a² (je l'avais expliqué à l'oral)*
    * Donner un argument rapide pour dire que a et a² ne sont pas conjugués dans $\mathcal{A}_5$ (On regarde le cardinal de la classe de conjugaison de a qui est l'ensemble des $5$-cycles).

    On en vient aux questions sur le plan:
    * Je donne en application du premier théorème d'isomorphisme le théorème chinois, on me demande de préciser l'isomorphisme (donc de refaire la preuve) et d'indiquer comment en trouver la réciproque (en utilisant le théorème de Bézout).
    On me demande alors si je connais un algorithme rapide de calcul des coefficients de cette écriture, j'ouvre grand les yeux de surprise et indique que je ne connais que l'algorithme d'Euclide étendu mais n'ai aucune idée de sa rapidité, on passe à autre chose.
    *Dans mon plan je définis deux éléments conjugués comme deux éléments dans une même orbite pour l'action d'un groupe sur lui-même par conjugaison. On me fait remarqué qu'après j'applique cette définition aux matrices et on me demande si il n'y a pas un problème, je répond que oui puisque l'ensemble des matrices n'est pas un groupe multiplicatif (ndlr: il serait surement préférable de ne pas chercher à le définir et de se contenter de donner des exemples ou, même si je ne suis pas sûr que ca fonctionne, parler d'action des inversibles sur un anneau par conjugaison).

    Premier exercice:
    On se donne $G$ un p-groupe, on cherche à démontrer que pour tout diviseur $d$ du cardinal de $G$ il existe un sous-groupe de $G$ de cardinal $d$.
    *J'énonce mon idée: démontrer l'existence d'un sous-groupe non trivial distingué et utiliser une récurrence forte et un passage au quotient pour obtenir le résultat.
    *On me demande alors, logiquement, comment garantir l'existence d'un tel sous-groupe.
    Je passe une minute à réfléchir à voix haute, dire toutes les bêtises qui me passent par la tête et à expliquer pourquoi ca ne fonctionne pas (parfois avec l'aide du jury). On me demande alors de donner la définition du centre d'un groupe, je la donne et fini par réagir? Je redémontre alors que le centre d'un p-groupe est non-trivial (on utilise la formule des classes, voir Perrin prop 4.15).
    *On en revient alors au théorème.
    Je donne le cardinal de l'image réciproque d'un sous-groupe $H$ de $G/Z(G)$ par la projection canonique (si $H$ est de cardinal $a$ et $Z(G)$ de cardinal $b$ l'image réciproque est de cardinal $ab$) et je dis qu'il faudrait redémontrer que c'est un sous-groupe, on me dit que ce n'est pas nécessaire,. Avec un peu d'aide du jury j'explique comment avec la récurrence forte on peut trouver un sous-groupe qui convient, soit en regardant un sous-groupe image réciproque par la projection canonique, soit en regardant un sous-groupe du centre.

    Deuxième exercice:
    Que dire de l'action par conjugaison de $O_n(\mathbf{R})$ sur $S_n(\mathbf{R})$ ?
    * Je commence par montrer que cette action est bien définie.
    * Je précise que le théorème spectral nous assure que l'orbite contient une matrice diagonale. On me demande si elle est unique. Je répond que non à cause de l'algorithme de Gauss et de la description des orbites pour l'action par congruence. On me demande si ce que je dis s'applique ici, je répond que non puisque c'est l'action de $Gl_n(\mathbf{R})$. On en reste là pour l'instant

    Troisième exercice:
    On considère une matrice réelle $A$ telle qu'elle soit semblable à $2A$, que dire de $A$ ?
    *Ayant encore mon deuxième développement en tête je cherche à exprimer le polynôme caractéristique de $2A$ (noté $P_{2A}$) à partir de celui de $A$ (noté $P_A$). J'écris $P_{2A}=2^n\,P_A$, on me dit que l'idée est bonne mais que c'est faux. On me fait reprendre la définition, je montre alors que $P_{2A}(X)=2^n\,P_A(X/2)$ (où n est la taille de la matrice).
    * Avec l'aide du jury je fini par dire que , puisque deux matrices semblables ont le même polynôme caractéristique $P_A(X)=2^n\,P_A(X/2)$, on m'indique que je peux conclure avec ça, je prends le temps de réfléchir et explique si $\lambda$ est une valeur propre non nul de $A$, alors c'est également le cas de $\lambda/2$, $\lambda/4$ etc, on a donc plus de valeurs propres que la dimension de l'espace, c'est absurde, $A$ est donc nilpotente.

    Retour au deuxième exercice:
    On considère la matrice $ \left(\begin{array}{ll}
    1 & 0 \\
    0 & 2 \\

    \end{array}\right) $, donner une autre matrice diagonale dans son orbite.
    Péniblement je fini par regarder ce que donne le conjugué par la matrice $ \left(\begin{array}{ll}
    0 & 1 \\
    1 & 0 \\

    \end{array}\right) $ (c'est $ \left(\begin{array}{ll}
    2 & 0 \\
    0 & 1 \\

    \end{array}\right) $). L'oral se termine là.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury a été dans l'ensemble bienveillant bien que l'un des membres avait l'air parfois peu convaincu par mes réponses (mais ce n'était peut-être qu'une impression). Il n'hésitait pas à aider en donnant des indications ou en indiquant à creuser une piste.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de surpise.

  • Note obtenue :

    15

  • Leçon choisie :

    125 : Extensions de corps. Exemples et applications.

  • Autre leçon :

    151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Développement choisi : (par le jury)

    Loi de réciprocité quadratique

  • Autre(s) développement(s) proposé(s):
  • Liste des références utilisées pour le plan :
  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Ce retour concerne la session de 2021.

    Après quelques questions sur le développement présenté (notamment l'existence de racines primitives de l'unité dans une clôture algébrique de $\mathbb{F}_p$ et la construction de ladite clôture algébrique), ils m'ont posé des questions sur l'autre développement puis sur la leçon en général :

    - Peut-on construire un cube de volume 2 ? (Non $\sqrt[3]{2}$ est de degré 3 sur $\mathbb{Q}$ et 3 n'est pas une puissance de 2, mot-dièse ThmDeWantzel comme chacun le sait)

    - Ah oui ? Et on est sûr que $\sqrt[3]{2}$ est de degré 3 sur $\mathbb{Q}$ ? (Oui c'est dans le nom. Et parce que si $X^3 - 2$ n'était pas irréductible dans $\mathbb{Q}[X]$, il aurait une racine rationnelle puisqu'il est de degré 3. Or ce n'est pas le cas.)

    - Peut-on construire un carré d'aire $\pi$ ? (Non sinon $\sqrt{\pi}$ serait algébrique sur $\mathbb{Q}$ et donc $\pi$ aussi puisqu'il appartiendrait à l'extension finie $\mathbb{Q}\left( \sqrt{\pi} \right)$.)

    - Est-ce que les nombres constructibles à la règle et au compas sont constructibles au compas seul ? (Oui. Il m'a juste demandé ce que j'en pensais et je lui ai donné l'heuristique derrière le théorème de Wantzel (équations algébriques de degré $\leqslant 2$) et que donc ce serait pas déconnant.)

    - Etant donnés deux polynômes annulateurs non nuls de deux éléments algébriques $x$ et $y$ sur un corps, peut-on construire un polynôme annulateur non nul de $xy$ et si oui comment ? (Si $P$ est annulateur de $x$ et $Q$ est annulateur de $y$, le polynôme $R(X) = \mathrm{Res}_Y (Y^{\mathrm{deg}P}P(\frac{X}{Y}),Q(Y))$ convient.)

    - Comment démontrer le théorème de Steinitz sur l'existence et l'unicité à isomorphisme près de la clôture algébrique d'un corps quelconque ? (J'ai dit qu'on utilisait le lemme de Zorn mais que j'avais pas les détails. On est passé à la suite.)

    - Que peut-on dire de l'anneau $\mathbb{F}_{17}[X]/(X^2 - 11)$ ? (C'est un corps parce que 11 n'est pas un résidu quadratique modulo 17, cf la loi de réciprocité quadratique.)

    - Quel est le degré de l'extension $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ sur $\mathbb{Q}$ ? (4)

    - Peut-on trouver $\alpha$ tel que cette extension soit égale à $\mathbb{Q}(\alpha)$ ? ($\alpha = \sqrt{2} + \sqrt{3}$. Une inclusion est évidente. Pour l'autre, remarquer que $\frac{1}{\alpha} = \sqrt{3} - \sqrt{2}$ et qu'alors $\alpha + \frac{1}{\alpha} = 2 \sqrt{3}$ et $\alpha - \frac{1}{\alpha} = 2 \sqrt{2}$.)

    - Est-ce qu'il existe un corps intermédiaire entre $\mathbb{Q}$ et $\mathbb{Q}(\alpha)$ qui ne soit ni $\mathbb{Q}(\sqrt{2})$ ni $\mathbb{Q}(\sqrt{3})$ ? (Oui, $\mathbb{Q}(\sqrt{6})$.)

    - Est-ce que vous pouvez donner sans réfléchir le degré de l'extension $\mathbb{Q}(j,\sqrt{2},\sqrt{3})$ sur $\mathbb{Q}$ ? (8. Utiliser la multiplicativité des degrés et le fait que le polynôme $X^2 + X + 1$ est le polynôme minimal de $j$ sur $\mathbb{Q}(\sqrt{2},\sqrt{3})$ puisque sinon il serait décomposé et aurait une racine non réelle dans un corps réel.)



    Le jury me laissait le temps de réfléchir s'il y en avait besoin (par exemple pour la question sur la constructibilité au compas seul). J'ai un peu bégayé sur le carré d'aire $\pi$ parce que j'ai fait un lapsus : j'ai commencé par dire "$\pi$ n'est pas constructible car pas algébrique". Le membre du jury m'a dit "ce n'est pas $\pi$ qu'on veut construire". Je n'ai pas eu d'autre indication.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était globalement neutre. L'un des membres s'appliquait à regarder par la fenêtre pendant la défense de mon plan et de mon développement. Il a posé une ou deux questions au début mais sans plus. En fait un seul des membres a vraiment posé des questions, les deux autres ne sont intervenus qu'en une occasion chacun.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Il s'agissait de mon dernier oral donc je savais bien à quoi m'attendre. Le personnel était sympa. Je dirais néanmoins que 3h (disons 2h45) de préparation, c'est court. J'avais préparé cette leçon durant l'année et j'avais prévu de faire une partie supplémentaire : je l'ai faite sauter par manque de temps. Mais elle était tout à fait optionnelle donc ça ne m'a pas porté préjudice.

  • Note obtenue :

    17.25

  • Leçon choisie :

    243 : Séries entières, propriétés de la somme. Exemples et applications.

  • Autre leçon :

    229 : Fonctions monotones. Fonctions convexes. Exemples et applications.

  • Développement choisi : (par le jury)

    Partition d'un entier en parts fixées

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Ce retour concerne la session de 2021.

    Ce tirage était exactement le pire tirage possible dans mon cas. J'avais naturellement fait l'impasse sur les équa diff et en plus de ça, je n'ai pas pu préparer ces deux leçons que j'ai tirées. N'importe quoi d'autre m'aurait convenu, mais on a pas toujours ce qu'on veut j'imagine. J'ai dû improviser l'un des deux développements et le jury a choisi celui-là (évidemment, sinon c'est pas drôle).

    J'ai fait un plan très simple en deux parties : d'abord les propriétés des séries entières (définition + CV, régularité, unicité des coefficients ... bref, les trucs de base) puis une deuxième partie sur deux applications : mes développements.

    Malgré le fait que j'ai découvert le développement 30 minutes avant de le présenter, j'ai pu le défendre à une erreur de calcul près. Le jury m'a fait corriger cette erreur par la suite.

    Voilà les questions qui m'ont été posées :

    - Le lemme d'Abel concernant les séries entières à coefficients positifs marche-t-il toujours si on ne suppose plus la positivité des coefficients ? (Si seulement)

    - Et si on suppose $f$ développable en série entière, de rayon de convergence 1, tq $\sum_n a_n$ converge, est-ce que $f$ admet une limite en $1$ et si oui, quelle est-elle ? (Y a pas de piège)

    - Enoncer la formule de Taylor-Lagrange.

    - Expliciter un exemple de mon plan (on le trouve dans Hauchecorne au chapitre séries entières : deux séries entières de rayon de convergence fini dont le produit est de rayon infini)

    - Soit $(a_n)$ une suite réelle tq la série de terme général $a_n^2$ converge. Pour $t$ dans $\left[-1/2,1/2 \right]$ on pose $f(t) = \sum_n \frac{a_n}{n-t}$. La fonction $f$ est-elle définie et est-elle développable en série entière en 0 ? (30 secondes après que la question m'a été posée, une autre membre du jury a dit "on va s'arrêter là, il n'y a plus de temps" donc je n'ai pas eu l'occasion de dire grand chose sur le sujet)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était assez neutre. Une des membres souriait de temps en temps (en tout cas ses yeux souriaient, sinon elle portait un masque. Covid, tout ça).

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas grand chose à dire sur la préparation si ce n'est qu'elle dure 2h45. C'est peut-être un peu bête mais je le dis quand même : préparez-vous à différents types de tableaux. On m'avait dit que les tableaux aux oraux risquaient d'être tout petits et je me suis préparé en conséquence. Il se trouve que le tableau que j'ai eu était d'une taille tout à fait raisonnable. Il était peut-être un peu haut cela dit.

    En dehors de ça, je ne souhaite à personne de vivre ce moment où vous réalisez que vous n'avez préparé aucune des deux leçons tirées. Ceci dit, si ça vous arrive, essayez de ne pas paniquer : vous devriez connaître quelques références sur le sujet. Faites un plan simple, mettez les bases (le rapport du jury aide pour ça), mettez vos développements et c'est déjà pas mal.

    Il s'agissait de mon premier oral. Autant dire que j'en suis sorti extrêmement dépité. Même si j'avais su répondre aux questions et que je maîtrisais un minimum le sujet, je m'attendais à avoir une très sale note. J'ai été agréablement surpris. Conclusion : même si vous pensez avoir foiré, persévérez !

  • Note obtenue :

    14.25

  • Sujet du texte choisi :

    EDO: étude qualitative, méthode d'Euler implicite etc.

  • Sujet de l'autre texte :

    SVD, newton linéaire et autres horreurs.

  • Un petit résumé du texte :

    Etude de l'évolution du volume des poumons (représenté par un ballon) en fonction du temps à l'aide d'EDO.

  • Qu'avez vous produit durant la préparation ? (plan, code, dessins, preuves, ...)

    - Modélisation pour arriver à une EDO non linéaire
    - Etude qualitative de l'EDO: Existence et unicité de solutions maximales (il fallait prolonger par symétrie la fonction définissant l'EDO pour passer d'un fermé ($[0,+\infty[$) à un ouvert), globalité des solutions maximales (utilisation du théorème de sortie de tout compact et des propriétés des quantités/ fonctions introduites plus tôt)
    - Euler implicite: présentation du schéma, remarque sur le fait que le théorème de convergence ne s'applique pas, résolution de l'équation implicite par la méthode de Newton (on vérifie qu'on peut la mettre en place)
    - Illustration: Graphe de la solution avec Euler implicite et odeint (rien ne fonctionnait)

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    On a d'abord regardé mon code, j'ai réussi à trouver l'erreur dans mon algorithme de Newton.

    J'ai, après cela, eu des questions autour de la preuve:
    * Donner un énoncé du théorème d'explosion en temps fini (que j'ai utilisé)
    * Préciser la justification d'une inégalité
    * Corriger un argument qui reposait sur une inégalité fausse.

    On m'a ensuite demandé comment choisir une autre fonction phi donnant certaines propriété de l'énergie donné comme intégrale de phi.
    Enfin on m'a demandé de définir la notion de convergence de la méthode d'Euler implicite et pourquoi c'est une bonne idée d'utiliser cette méthode

  • Suite à la présentation, qu'est ce qui vous semblait améliorable ? (plan, gestion du temps, choix des résultats présentés, ...)

    J'ai beaucoup hésité sur la présentation de la modélisation, je n'avais pas toutes les quantités et équations introduites bien en tête.
    Cela m'a fait perdre un peu de temps, ce qui m'a forcé à abréger la fin de ma présentation sur la méthode d'Euler implicite et à ne pas écrire grand chose au tableau ni rentrer dans les détails des preuves.

  • Quelle a été l'attitude du jury (muet/aide/cassant) durant les questions ?

    Le jury a été très bienveillant et patient, aidant.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'ai été surpris que le temps au début de l'oral pour vérifier l'identité du candidat soit compté dans les 35 minutes de présentation. Heureusement j'ai, en faisant la remarque, bien eu droit à mes 35 minutes de présentation.

  • Note

    13.75

  • Leçon choisie :

    209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.

  • Autre leçon :

    233 : Analyse numérique matricielle. Résolution approchée de systèmes linéaires, recherche d’éléments propres, exemples.

  • Développement choisi : (par le jury)

    Théorème de Weierstrass par les polynômes de Berstein [no pdf]

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    J'ai oublié de justifier un calcul de mon développement, un des membres du jury me demande alors d'essayer de le retrouver d'une autre manière que celle annoncée, il m'a fallu du temps pour voir où il voulait en venir.
    (Avec les notations du Gourdon: il fallait exprimer $\frac{\partial^2 F(a,b)}{\partial a^2}(x,x)$ à l'aide de $B_n(x)$ et $B_n(x^2)$)
    On me demande ensuite comment en déduire Weierstrass, je donne la réponse sans problème (on paramétrise l'intervalle à l'aide de l'intervalle $[0,1]$).
    On me demande si le résultat est encore vrai sur $\mathbf{R}$, je répond que mon intuition me dit non mais que je n'ai pas de contre-exemple (mais je dis que le problème risque d'être en l'infini puisque la limite en l'infini le module d'un polynôme tends vers l'infini).
    On me suggère d'utiliser le critère de Cauchy uniforme, je dis donc que si une suite de polynôme converge uniformément sur $\mathbf{R}$ à partir d'un certain rang tous les polynômes sont de même degré, et même (il m'a fallu de l'aide pour le voir) que les polynômes ne diffèrent que d'une constante $c_n$.
    On me demande alors de conclure et... je n'y arrive pas (alors que, en y regardant après, c'est tout bête).

    On commence ensuite un exercice.
    On me demande de tracer la fonction $f$, $2\pi$-periodique défini sur $]0,2\pi [$ par $t \longmapsto \pi - t$ et qui vaut $0$ en $0$.
    On me demande de donner, sans calcul, un des coefficient de sa série de Fourier, je donne $c_0(f)=0$. On me dit que c'est vrai et on me fait remarquer que dans mon plan je l'ai présenté en utilisant (sans le dire) les $a_n$ et les $b_n$, c'était donc ce qui était attendu. On me dit également que les $a_n(f)$ valent $0$, je le justifie en disant que c'est parce-que $f$ est impaire.
    On me demande ensuite si je connais un critère de convergence de la série de Fourier, évidemment je donne Fejer en rigolant un peu tout en mentionnant que ca ne s'appliquera pas ici. Je parle ensuite de Dirichlet, je dis que la fonction doit être continue par morceaux, on me demande si c'est le cas, je dis que non, on me demande la définition, je la donne et je me corrige, et je parle d'une espèce de condition sur le taux d'accroissement que je n'arrive pas à retrouver, et on ne me laisse pas vraiment le temps de le faire.
    On me demande alors d'estimer la vitesse de convergence de la série de Fourier de $f$ vers $f$, j'ouvre grand les yeux en me demandant pourquoi poser une question pareil puis on me suggère de donner la norme de $f$. Je mentionne Parseval qu'on me demande d'écrire, j'y arrive péniblement et après quelques corrections du jury.
    On me demande ensuite d'exprimer les coefficients $c_n(f')$ en fonctions des $c_n(f)$, je dis ne plus me souvenir de la formule mais que je peux la retrouver par IPP, IPP dans laquelle évidemment je fais une erreur, on en reste là pour cet exercice.

    Pour finir on revient sur mon plan, j'y présentais le théorème donnant une condition nécessaire et suffisante pour qu'une fonction soit développable en séries entières au voisinage d'un point, on me demande si je peux en déduire une condition suffisante, je dis ne pas en connaître une mais que cela doit pouvoir se retrouver avec la formule de Taylor avec reste intégrale ou Taylor-Lagrange, avec une majoration. On me dit que c'est quelque chose comme ça et l'oral se termine là dessus.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    L'un des membres du jury avait l'air agacé par le temps que je mettais à répondre. Pour que je puisse répondre, ce membre me parlait très régulièrement pour me donner des indications ou pour redonner le cadre du problème / ce qui avait déjà été fait, ce qui avait pour effet paradoxale de m'empêcher de réfléchir (mais je suis sûr que ça partait d'une bonne intention).

    Les autres membres du jury était bienveillant. L'un d'entre eux prenait le temps de m'encourager à écrire au tableau et à creuser les pistes que j'évoquais.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Je suis arrivé très stressé dans la salle et cela a impacté mon oral: quelques cafouillages pendant la défense de plan et surtout une séance de questions bien plus laborieuse qu'elle n'aurait dû être.
    Mon erreur a été, je pense, de ne pas profiter du temps entre la préparation et l'oral pour me détendre mais d'avoir voulu profiter de ce temps pour préparer ma défense de plan et réviser mes développements.

    À posteriori, je me rends également compte qu'il fallait que je prenne le temps de faire quelques révisions sur les séries de Fourier pendant ma préparation.

  • Note obtenue :

    8.25

  • Leçon choisie :

    239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.

  • Autre leçon :

    228 : Continuité, dérivabilité, dérivation faible des fonctions réelles d’une variable réelle. Exemples et applications.

  • Développement choisi : (par le jury)

    Injectivité de la transformée de Fourier

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :
  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Plan : I. Régularité sous le signe intégral II Produit de convolution III Transformée de Fourier
    Questions sur le développement :
    - Etes vous sur de votre tout premier calcul ? J'ai un peu paniqué car l'un des jury pensait que je m'étais trompé, mais il avait du mal voir car il y avait des reflets au tableau.
    - Comment montre t-on qu’une fonction est holomorphe (ils attendaient analytique)
    - Recalculer intégrale de Gauss
    - Qu'est ce que la formule de dualité
    - Redemontrer la transformée de Fourier de la Gaussienne avec une equa diff (je ne m'en rappelais plus)
    - Comment s'appelle en probabilité la fonction dont j'avais calculé la transformée de Fourier ?
    - Pourquoi gamma_n, que j’avais défini dans mon dev, est une approximation de l’unité ?
    Questions sur le plan :
    - Pourquoi le produit de convolution est bien défini dans L1
    Exos :
    - une fonction définie par une intégrale à paramètre, il fallait utiliser la convergence dominée j’ai fini par trouver mais j’ai été très lent.
    - Une question sur la fonction gamma qui a duré 2 minutes (c’était la fin)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était composé d'une femme qui dirigeait les échanges et de deux hommes. Ils étaient très rassurants et positifs. Je répondais assez rapidement aux questions, mais lorsque dans un exercice je n'ai pas directement pensé à utiliser la convergence dominée ils ont été silencieux (en même temps ce n'était pas très dur et je pense qu'ils attendaient que je le trouve moi-même).

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    L'oral s'est passé comme je l'imaginais car j'avais déjà fait des oraux blancs.et très bien préparé cette leçon.
    J'ai consacré pour la préparation 1h45 pour le plan, 30 min pour les développements et le reste pour relire certaines démonstrations de propriétés que j'avais mises dans mon plan. On a ramassé mon plan 15 minutes avant la fin, l'organisation du lycée était vraiment parfaite.

  • Note obtenue :

    15.75