Développement : Nombres de Bell

Détails/Enoncé :

Pour tout $n \in \mathbb{N}_{> 0}$, on définit $B_n$ comme étant le nombre de partition de $\{1 , \ldots , n \}$. Alors ces nombres vérifient

$$ B_n =\frac{1}{e} \sum_{k \ge 0} \frac{k^n}{n!} $$

Autres années :

Versions :

  • Auteur :
  • Remarque :
    Énoncé : Pour tout entier naturel $n$ non nul, $B_n$ désigne le nombre de relations d'équivalence sur un ensemble à $n$ éléments. Et l'on conviendra que $B_0=1$.
    Alors :
    -- Pour tout $n\in\mathbb{N}$,
    \begin{equation}B_{n+1}=\sum\limits_{k=0}^{n} \begin{pmatrix}n\\k\\ \end{pmatrix}B_{n-k}.
    \end{equation}
    -- La série entière de la variable réelle $t$, $$\sum\limits_{n\ge 0}\frac{B_n}{n!}t^n$$
    a un rayon de convergence $R$ non nul et sa somme $S$ vérifie :
    $$
    \forall t\in \,]-R,R\,[, \;S'(t)= \exp(t)S(t).
    $$
    -- Pour tout entier naturel $n$,
    $$
    B_n=\frac 1 e\sum\limits_{p=0}^{+\infty} \frac {p^n }{ p! }\hbox{ (formule de Doblinski)}.
    $$

    Référence : Analyse pour l'agrégation de mathématiques, 40 développements, J. et L. Bernis, Ellipses
  • Référence :