Développement : Le dénombrement des polynômes irréductibles unitaires sur un corps fini

Détails/Enoncé :

$\textbf{Théorème.}$ Soit $n$ un entier naturel non nul, on note $N_q(n)$ le nombre de polynômes irréductibles unitaires de degré $n$ sur le corps fini $\mathbb{F}_q$, alors, on a :
$$N_q(n)=\frac{1}{n}\sum_{d\vert n}q^d\mu\left(\frac{n}{d}\right).$$

Versions :

  • Auteur :
  • Remarque :
    Développement pas trop long, assez compliqué mais très recasable ce qui en fait, pour moi, un incontournable.
    On utilise le théorème fondamental de l'arithmétique, le théorème de Lagrange, la notion de polynome minimal, la notion de corps de rupture et de décomposition et le théorème de la base télescopique.
    NB1 : Il faut se convaincre soi-même de la pertinence d'un recasage et être capable de défendre son choix le jour J devant le jury. Vous pouvez, évidemment, ne pas être d'accord avec moi.
    NB2 : Il peut y avoir des fautes dans ce que j'écris, faites attention.
    NB3 : Attention, il n'est pas évident que : $ [F_{q^n} : F_[q}] = n $. (voir la question 1 qui manque de détails)
  • Référence :
  • Fichier :