Leçon 123 : Corps finis. Applications.

(2022) 123
(2024) 123

Dernier rapport du Jury :

(2023 : 123 - Corps finis. Applications.) La construction des corps finis doit être connue et une bonne maîtrise des calculs dans les corps finis est indispensable. Le calcul des degrés des extensions, le théorème de la base téléscopique, les injections des divers $\mathbb{F}_q$ sont incontournables. La structure du groupe multiplicatif doit aussi être connue. Des applications des corps finis (y compris pour $\mathbb{F}_q$ avec q non premier !) ne doivent pas être oubliées. Par exemple, l'étude de polynômes à coefficients entiers et de leur irréductibilité peut figurer dans cette leçon. L'étude des carrés dans un corps ni et la résolution d'équations de degré 2 sont des pistes intéressantes. Les candidates et candidats peuvent aller plus loin en détaillant des codes correcteurs ou en étudiant l'irréductiblilité des polynômes à coefficients dans un corps fini.

(2022 : 123 - Corps finis. Applications.) Une construction des corps finis doit être connue et une bonne maîtrise des calculs dans les corps finis est indispensable. Les injections des divers $F_q$ doivent être connues. Des applications des corps finis (y compris pour $F_q$ avec q non premier !) ne doivent pas être oubliées. Par exemple, l'étude de polynômes à coefficients entiers et de leur irréductibilité peut figurer dans cette leçon. Le calcul des degrés des extensions et le théorème de la base téléscopique sont incontournables. La structure du groupe multiplicatif doit aussi être connue. L'étude des carrés dans un corps fini et la résolution d'équations de degré 2 sont envisageables. S'ils le désirent, les candidats peuvent aller plus loin en détaillant des codes correcteurs ou en étudiant l'irréductiblilité des polynômes à coefficients dans un corps fini.
(2020 : 123 - Corps finis. Applications.) Une construction des corps finis doit être connue et une bonne maîtrise des calculs dans les corps finis est indispensable. Les injections des divers $F_q$ doivent être connues. Les applications des corps finis (y compris pour $F_q$ avec q non premier !) ne doivent pas être oubliées. Par exemple, l’étude de polynômes à coefficients entiers et de leur irréductibilité peut figurer dans cette leçon. La structure du groupe multiplicatif doit aussi être connue. L’étude des carrés dans un corps fini et la résolution d’équations de degré 2 sont envisageables. $$$$ S’ils le désirent, les candidats peuvent aller plus loin en détaillant des codes correcteurs ou en étudiant l’irréductiblilité des polynômes à coefficients dans un corps fini, ou encore en évoquant les formes quadratiques, les groupes de Chevalley.
(2019 : 123 - Corps finis. Applications.) Une construction des corps finis doit être connue et une bonne maîtrise des calculs dans les corps finis est indispensable. Les injections des divers $\textbf{F}_q$ doivent être connues. Les applications des corps finis (y compris pour $\textbf{F}_q$ avec q non premier !) ne doivent pas être oubliées. Par exemple, l’étude de polynômes à coefficients entiers et de leur irréductibilité peut figurer dans cette leçon. Le calcul des degrés des extensions et le théorème de la base téléscopique sont incontournables. La structure du groupe multiplicatif doit aussi être connue. L’étude des carrés dans un corps fini et la résolution d’équations de degré 2 sont envisageables. S’ils le désirent, les candidats peuvent aller plus loin en détaillant des codes correcteurs ou en étudiant l’irréductiblilité des polynômes à coefficients dans un corps fini.
(2017 : 123 - Corps finis. Applications.) Une construction des corps finis doit être connue et une bonne maîtrise des calculs dans les corps finis est indispensable. Les injections des divers $F_q$ doivent être connues et les applications des corps finis (y compris pour $F_q$ avec $q$ non premier !) ne doivent pas être oubliées, par exemple l’étude de polynômes à coefficients entiers et de leur irréductibilité peut figurer dans cette leçon. La structure du groupe multiplicatif doit aussi être connue. Le calcul des degrés des extensions et le théorème de la base téléscopique sont incontournables. L’étude des carrés dans un corps fini et la résolution d’équations de degré 2 sont envisageables. S’ils le désirent, les candidats peuvent aller plus loin en détaillant des codes correcteurs ou en étudiant l’irréductiblilité des polynômes à coefficients dans un corps fini
(2016 : 123 - Corps finis. Applications.) Une construction des corps finis doit être connue et une bonne maîtrise des calculs dans les corps finis est indispensable. Les injections des divers $F_q$ doivent être connues et les applications des corps finis (y compris pour $F_q$ avec q non premier !) ne doivent pas être oubliées : citons par exemple l’étude de polynômes à coefficients entiers et de leur irréductibilité. Le calcul des degrés des extensions et le théorème de la base télescopique sont incontournables. L’étude des carrés dans un corps fini et la résolution d’équations de degré 2 sont envisageables. S’ils le désirent, les candidats peuvent aller plus loin en détaillant des codes correcteurs.
(2015 : 123 - Corps finis. Applications.) Il s'agit d'une leçon comportant un certain nombre d'attendus. En premier lieu, une construction des corps finis doit être connue. Ensuite, les constructions des corps de petit cardinal doivent avoir été pratiquées. Les injections des divers $F_q$ doivent être connues. Enfin, les applications des corps finis (y compris pour $F_q$ avec $q$ non premier !) ne doivent pas être oubliées : citons par exemple l'étude de polynômes à coefficients entiers et de leur irréductibilité. Il sera bon de comprendre l'utilisation des degrés des extensions, et leurs petites propriétés arithmétiques amenées par le théorème de la base téléscopique. Un candidat qui étudie les carrés dans un corps fini doit savoir aussi résoudre les équations de degré 2. Le théorème de l'élément primitif, s'il est énoncé, doit pouvoir être utilisé. Les applications sont nombreuses. S'ils sont bien maîtrisées, alors les codes correcteurs peuvent être mentionés.
(2014 : 123 - Corps finis. Applications.) Un candidat qui étudie les carrés dans un corps fini doit savoir aussi résoudre les équations de degré 2. Les constructions des corps de petit cardinal doivent avoir été pratiquées. Les injections des divers $F_q$ doivent être connues. Le théorème de Wedderburn ne doit pas constituer le seul développement de cette leçon. En revanche, les applications des corps finis (y compris pour $F_q$ avec $q$ non premier !) ne doivent pas être négligées. Citons par exemple l'étude de polynômes à coefficients entiers. Le théorème de l'élément primitif, s'il est énoncé, doit pouvoir être utilisé.

Développements :

Plans/remarques :

2023 : Leçon 123 - Corps finis. Applications.

  • Auteur :
  • Remarque :
    Possibilité d'avoir ma version complète manuscrite en me contactant par mail.
  • Fichier :

2022 : Leçon 123 - Corps finis. Applications.


2020 : Leçon 123 - Corps finis. Applications.

  • Auteur :
  • Remarque :
    Toutes les références sont à la fin du plan.

    Mes excuses pour l'écriture, et attention aux coquilles...
  • Fichier :

2019 : Leçon 123 - Corps finis. Applications.


2018 : Leçon 123 - Corps finis. Applications.


2017 : Leçon 123 - Corps finis. Applications.


2016 : Leçon 123 - Corps finis. Applications.


2015 : Leçon 123 - Corps finis. Applications.


Retours d'oraux :

2018 : Leçon 123 - Corps finis. Applications.

  • Leçon choisie :

    123 : Corps finis. Applications.

  • Autre leçon :

    101 : Groupe opérant sur un ensemble. Exemples et applications.

  • Développement choisi : (par le jury)

    Théorème de Dirichlet faible

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le jury m'a aidé à compléter mon développement qui avait deux trous (ce développement est assez long, pour pouvoir conclure j'ai passé vite).
    J'ai eu du mal. Notamment comment le quotient des polynomes reste à coefficients entiers.

    Dernier jour de mes oraux j'étais très fatigué avec une table de prof qui empêchait de se reculer du tableau pour voir plus large.

    Q : construire le corps à 4 éléments. Table de multiplication. J'ai su faire.
    Q : plonger le corps dans une extension (réponse : la dimension de l'e.v était fractionnaire donc pas possible de plonger le corps, toutes les puissances supérieures des nombres entiers ne conviennent pas). J'ai su faire
    Q : différence entre irréductible et admettre des racines (sur des exemples velus). Critère d'irréductibilité dans une extension de corps.
    Q : Sur le plan expliquer le lien avec les codes de Hamming (corps fini et décodage)
    Q : Sur les corps de décomposition. Pas su répondre. en travaillant sur F27


  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Bienveillant, mais parfois j'avais un peu le sentiment d'avoir des rames...

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'aurais du proposer en dev la classification des formes quadratiques sur Fp, plus simple, que je maîtrisais bcp mieux. Il faut prendre un développement de niveau pas élémentaire mais qu'on maîtrise suffisamment. Le premier jour ce serait passé mais avec la fatigue, le dernier jour des oraux c'est dur....

    Pronostic de note (casse gueule) : 11

  • Note obtenue :

    12.5


2015 : Leçon 123 - Corps finis. Applications.

  • Leçon choisie :

    123 : Corps finis. Applications.

  • Autre leçon :

    161 : Isométries d'un espace affine euclidien de dimension finie. Applications en dimensions $2$ et $3$.

  • Développement choisi : (par le jury)

    Construction des corps finis

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Exercices qui étaient pour la plupart en lien avec le développement développé. Aucune question sur le plan. Pas de question pédagogique.

    Prendre un générateur de $F_q^*$ ($q=p^n$) et donner son ordre, en déduire le degré du polynôme minimal sur $F_p$. Cette question avait pour but de me faire dire que, lorsque l'existence de $F_q$ était établie, le résultat du développement, i.e. l'existence d'un polynôme irréductible de degré n sur $F_p$, devenait quasiment immédiat.
    Ensuite, un deuxième exo qui me demandait de décomposer $X^8+X$ en irréductibles sur $F_4$.
    Puis, un exo sur le morphisme de Frobenius F : déterminer noyaux et images des itérés $F^{°i}$, puis montrer que les itérés de F forment une base des automorphismes de corps de $F_q$, j'ai juste eu le temps de montrer que c'était une famille génératrice, puis il m'a dit que la liberté se montrait par argument de cardinalité.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le niveau n'était pas bien difficile, mais le jury, sympathique, mettait un gros rythme dans son interrogation, ne me laissant souvent que peu de temps pour réfléchir. Je me suis sans doute parfois un peu précipité pour donner certaines réponses, ce qui m'a fait dire quelques bêtises.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Très surpris par le deuxième exo. Lorsque j'ai écris $F_4=\{0,1,\alpha,\alpha +1\}$, où $\alpha$ est racine de $X^2+X+1$, le jury m'a vite demandé si $\alpha$ était racine de $X^8+X$. Après quelques instants de réflexion, j'ai fini par dire que $\alpha^4=\alpha$ car $\alpha \in F_4$, et avant d'avoir le temps de poursuivre mon raisonnement, le jury m'a directement affirmé que $F_4$ était inclus dans $F_8$ puis a enchaîné sur la suite de l'exercice. Or je me suis aperçu, à tête reposée à l'issue de l'oral, que c'était complètement faux : durant tout l'exercice, le jury a fait comme si 8 était puissance de 4. Alors, soit le jury est particulièrement machiavélique en me donnant des résultats faux, mais comme il a enchaîné directement sans me laisser le temps de réfléchir à ce qu'il disait, et que les deux autres membres du jury n'avaient pas l'air au taquet sur l'exo, je pense plutôt que le jury n'a pas remarqué non plus son erreur.

  • Note obtenue :

    Pas de réponse fournie.


Références utilisées dans les versions de cette leçon :

Cours d'algèbre , Perrin (utilisée dans 433 versions au total)
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi (utilisée dans 493 versions au total)
Nouvelles histoires hédonistes de groupes et géométries, P. Caldero, J. Germoni (utilisée dans 67 versions au total)
Théorie de Galois, Gozard (utilisée dans 35 versions au total)
Extension de Corps - Théorie de Galois, Josette Calais (utilisée dans 6 versions au total)
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte (utilisée dans 144 versions au total)
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas (utilisée dans 142 versions au total)
Histoires hédonistes de groupes et géométries, Tome 1, Caldero, Germoni (utilisée dans 120 versions au total)
Histoires hédonistes de groupes et géométries, Tome 2, Caldero, Germoni (utilisée dans 20 versions au total)
Cours d'algèbre , Demazure (utilisée dans 16 versions au total)
Oraux X-ENS Algèbre 3 , Francinou, Gianella, Nicolas (utilisée dans 74 versions au total)
Cours d'arithmétique , Serre (utilisée dans 12 versions au total)
Objectif Agrégation, Beck, Malick, Peyré (utilisée dans 292 versions au total)
Théorie de Galois , Gozart (utilisée dans 7 versions au total)
Leçons pour l’agrégation de mathématiques - Préparation à l’oral, Dreveton, Maximilien & Lhabouz, Joachim (utilisée dans 20 versions au total)
Corps Finis, Dany-Jack Mercier (utilisée dans 3 versions au total)
Algèbre , Gourdon (utilisée dans 334 versions au total)