Soit $\mathbb{F}_q$ un corps fini de cardinal $q$ (puissance d'un nombre premier). Pour tout $n\in\mathbb{N}^*$, il existe un polynôme irréductible sur $\mathbb{F}_q$ de degré $n$. Le nombre de tels polynômes est équivalent à $\frac{q^n}{n}$ lorsque $n\to\infty$.