Profil de Matmat

Informations :

Inscrit le :
08/07/2021
Dernière connexion :
16/10/2021
Email :
matthieu.mattea@live.fr
Inscrit à l'agrégation :
2020, option B
Résultat :
Admis, classé(e) 99ème

Ses versions de développements :

  • Développement :
  • Remarque :
    Développement relativement classique, assez long mais pas très difficile.
    On utilise le théorème C^1 sous le signe intégrale, le théorème fondamental de l'analyse (qu'il faut savoir rapidement démontrer) et le théorème de convergence dominée.
    On peut également, comme le suggère le livre de Julien et Laurent Bernis, démontrer ce résultat de deux manières différentes, mais cela me parait beaucoup trop long pour être présenter en 15 minutes; ce sont néanmoins des techniques à connaitre.

    NB1 : Il faut se convaincre soi-même de la pertinence d'un recasage et être capable de défendre son choix le jour J devant le jury. Vous pouvez, évidemment, ne pas être d'accord avec moi.
    NB2 : Il peut y avoir des fautes dans ce que j'écris, faites attention.
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    Développement très classique, assez long et de niveau correct.
    On démontre que dans la décompostion de Dunford f = d+n, d et n sont des polynomes en f.
    On utilise l'identité de Bezout, le théorème de diagonalisation simultanée et le fait que si deux endomorphismes nilpotents n et n' commutent alors n'-n est nilpotent.
    Si on veut, on peut omettre la polynomialitée de d et n en f (c'est également fait dans Gourdon) et rajouter (pour bien tenir 15 minutes) la décomposition de Dunford de exp(A), mais dans ce cas on ne peut plus présenter ce développement dans la 153 et ça me parait trop peu pour le recaser dans la 156.

    NB1 : Il faut se convaincre soi-même de la pertinence d'un recasage et être capable de défendre son choix le jour J devant le jury. Vous pouvez, évidemment, ne pas être d'accord avec moi.
    NB2 : Il peut y avoir des fautes dans ce que j'écris, faites attention.
    NB3 : ATTENTION : si P et Q sont deux polynomes et f un endomorphisme, on a (P*Q)(f) = P(f)°Q(f) et non pas: (P*Q)(f) = P°(Q(f)).
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    Développement pas trop long, assez compliqué mais très recasable ce qui en fait, pour moi, un incontournable.
    On utilise le théorème fondamental de l'arithmétique, le théorème de Lagrange, la notion de polynome minimal, la notion de corps de rupture et de décomposition et le théorème de la base télescopique.
    NB1 : Il faut se convaincre soi-même de la pertinence d'un recasage et être capable de défendre son choix le jour J devant le jury. Vous pouvez, évidemment, ne pas être d'accord avec moi.
    NB2 : Il peut y avoir des fautes dans ce que j'écris, faites attention.
    NB3 : Attention, il n'est pas évident que : $ [F_{q^n} : F_[q}] = n $. (voir la question 1 qui manque de détails)
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    Développement très classique, relativement court et pas trop dur.
    On utilise le théorème spectral, le théorème de diagonalisation simultanée, les polynomes d'interpolation de Lagrange, la caractérisation séquencielle de la continuité, la compacité de On(R), et le fait qu'une suite dans un compact qui admet une seule valeur d'adhérence est convergente.
    NB1 : Il faut se convaincre soi-même de la pertinence d'un recasage et être capable de défendre son choix le jour J devant le jury. Vous pouvez, évidemment, ne pas être d'accord avec moi.
    NB2 : Il peut y avoir des fautes dans ce que j'écris, faites attention.
    NB3 : Le jury a choisi ce développement le jour de mon oral, on m'a, entre autres, posé les questions 1,2,3.
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    Développement assez original, pas trop dur mais assez long.
    On utilise le théorème d'inertie de Sylvester, le développement par colonne du déterminant et le fait que si f est une fonction continue, positive, d'intégrale nulle alors f est nulle.
    Je propose comme recasages supplémentaires la 170 et la 171, à condition de bien insister sur le lemme.

    NB1 : Il faut se convaincre soi-même de la pertinence d'un recasage et être capable de défendre son choix le jour J devant le jury. Vous pouvez, évidemment, ne pas être d'accord avec moi.
    NB2 : Il peut y avoir des fautes dans ce que j'écris, faites attention.
  • Référence :
  • Fichier :

Ses plans de leçons :