Algèbre : le grand combat: Cours et exercices

Grégory Berhuy

Utilisés dans les 12 versions de développements suivants :

  • Développement :
  • Remarque :
    D'après moi pour les leçons : 106, 108, 160 et 161.

    Attention démontrer les générateurs de O(E) et de SO(E) est assez long. Pour être passé dessus en développement blanc : ne pas oublier le cas où u = id.
    Le dessin (à faire au fur et à mesure) rend d'après moi la démonstration limpide.
    Sans celui-ci, elle est indigeste.

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    D'après moi pour les leçons : 151 et 157.

    Attention aux notation du livre de G. Berhuy, ce qu'il appelle une cellule de Jordan est généralement appelé bloc de Jordan (il fait une distinction entre les deux).

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    D'après moi pour les leçons : 101 et 104.

    Je ne démontre que 3 des 4 théorèmes de Sylow (celui avec l'argument de Frattini étant nettement plus difficile), donc le développement se retrouve être un peu court.
    Rajouter la démonstration du théorème Cayley résout le problème.

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    D'après moi pour les leçons : 102, 104, 107, 120 et très éventuellement 142 (pour la partie unicité).

    C'est vraiment bien fait dans le livre de G. Berhuy (que je trouve remarquable à titre personnel), donc si vous cherchez une bonne source n'hésitez pas à y jeter un coup d'oeil.

    Il est indispensable de savoir montrer que dans un groupe abélien fini, il existe un élément d'ordre l'exposant du groupe...

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Référence :
  • Fichier :

Utilisés dans les 16 versions de leçons suivantes :