(2024 : 103 - Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications.)
Dans un premier temps, la notion de conjugaison dans un groupe introduite brièvement doit être développée et illustrée dans des situations variées. On doit proposer des situations où la conjugaison aide à résoudre certains problèmes (par exemple, en transformant un élément en un autre plus simple à manipuler). On peut aussi illustrer et utiliser le principe du " transport par conjugaison " voulant que $hgh^{-1}$ ait la même " nature géométrique " que g. Ensuite, il est attendu de développer l'intérêt de la notion de sous-groupe distingué en particulier en regard de la structure de groupe obtenue par quotient d'un groupe, le lien entre sous-groupe distingué et noyau de morphisme de groupes, ainsi que la factorisation d'un morphisme de groupe au travers d'un tel quotient. Il est indispensable de proposer quelques résultats bien choisis mettant en évidence l'utilisation de ces notions : citons par exemple le lien entre les sous-groupes de l'un et de l'autre et la caractérisation interne des produits directs. L'examen de la simplicité de certains groupes peut être proposé. Comme indiqué dans le sujet, il est demandé de présenter des exemples pertinents utilisés pour obtenir des résultats significatifs. De tels exemples sont nombreux en théorie des groupes mais il est souhaitable d'en proposer dans d'autres domaines, comme en arithmétique, en géométrie et en algèbre linéaire. Pour aller plus loin, les candidates et candidats peuvent poursuivre en illustrant ces notions en théorie des représentations des groupes finis (classes de conjugaison et nombre de représentations irréductibles, treillis des sous-groupes distingués lu dans la table de caractères, etc.). La notion de produit semi-direct et les théorèmes de Sylow débordent du programme. Il est possible de les évoquer, mais en veillant à les illustrer par des exemples et des applications.
Pas de réponse fournie.
Pas de réponse fournie.
Le développement s'est bien passé, il n'a duré que 12'30, mais j'ai eu un trou sur le calcul final, je me suis un peu embourbé. Au bout d'une minute ou deux de réflexion, le jury finit par m'expliquer comment finir le calcul, je le fais sans problème (cf ma version du développement pour plus de détails à ce sujet, il y a une erreur dans la référence dans laquelle je prenais le développement). Aucune question sur le développement.
Questions sur le plan:
- Mq deux matrices réelles conjuguées dans C sont conjuguées dans R. C'était un résultat du plan que je connaissais bien, j'ai su le prouver.
- Mq dans un corps algébriquement clos, une matrice et sa transposée sont conjuguées Là encore, un résultat du plan que j'avais révisé pendant la préparation : l'ingrédient secret est la réduction de Jordan (qui existe toujours car on est dans un corps algébriquement clos). Une fois avoir dit ça, le jury ne m'a pas demandé de détailler davantage.
- J'avais écrit une proposition dans laquelle j'affirmais que deux matrices semblables ont même déterminant, trace, polynôme caractéristique et minimal. Le jury m'a demandé si certains de ces invariants en impliquaient d'autres. J'ai eu un peu de mal à comprendre ce que le jury voulait sur cette question. On m'a donc demandé si, sachant que le polynôme caractéristique était invariant pour deux matrice semblables, je pouvais en déduire que le déterminant était le même. C'est vrai puisque (au signe près), le déterminant est le coefficient constant dans le polynôme caractéristique. J'ajoute qu'on a aussi que la trace est invariante car c'est (encore au signe près) le coefficient de degré n-1 dans le polynôme caractéristique. Le jury est content.
- Est-ce qu'il suffit pour deux matrices d'avoir le même polynôme caractéristique et minimal pour être semblables ? Non, on peut trouver des contre-exemples.
- Est-ce qu'en rajoutant des hypothèses sur les matrices qu'on considère, ce résultat peut devenir vrai? Je donne un ou deux idées, peu intéressantes. Le jury rajoute alors : "des hypothèses, même très fortes". Je donne alors l'hypothèse de diagonalisabilité, le jury est content et me demande de développer pourquoi ça marche. J'arrive à le faire. Essentiellement, les deux matrices vont être diagonalisables grâce au polynôme minimal, et le même polynôme caractéristique permet d'affirmer qu'elles auront les mêmes valeurs propres avec les mêmes multiplicités. Elles seront donc conjuguées à la même matrice diagonale, donc conjuguées entre elles.
- Trouver deux matrices dans C ayant même polynôme caractéristique et minimal mais qui ne sont pas conjuguées entre elles. J'affirme que pour des raisons de taille de blocs de Jordan, il faut taper au moins en taille 4 pour les matrices pour avoir un exemple. J'essaie de construire des matrices qui font le job, mais grosse galère. Je mets des 1 sur les diagonales de mes matrices, et après j'essaie de faire joujou avec les tailles des blocs de Jordan, mais je n'y arrive pas. Le jury me demande pourquoi je m'escrime à mettre des 1 sur la diagonales; Je réponds en effet que ce n'est pas pertinent, et donc je mets des zéros (pour ces histoires de blocs de Jordan, j'ai une meilleure intuition avec les matrices nilpotentes). Je finis par y arriver, mais on y a passé du temps.
Un exercice pour conclure. On fait agir par conjugaison le groupe A4 sur l'espace X des 3-cycles contenus dans A4. Mq les 3-cycles n'engendrent pas A4.
Aucune idée pour démarrer : je dis donc que si les 3-cycles engendraient A4, on pourrait montrer que ce groupe est simple (je n'étais pas trop sûr de moi ici), ce qui n'est pas puisque le sous groupe des doubles transpositions est distingué dans A4. Le jury m'invite à résoudre l'exercice en utilisant l'action par conjugaison qu'il m'a introduite, en écrivant la relation orbite stabilisateur. J'essaie ensuite quelques trucs qui n'aboutissent vraiment pas, je parle du fait que le type caractérise entièrement les classes de conjugaison dans Sn (c'était dans mon plan), mais je ne sais pas trop quoi en faire. A la fin, le jury me demande de dénombrer les 3-cycles de A4, je le fais, et l'oral s'est arrêté là.
Jury plutôt sec au départ, mais souriant à l'issue de la défense de plan et très souriant à l'issue du développement, ce qui m'a mis en confiance. Pendant la séance de questions, le jury était aidant mais me laissait bien le temps de réfléchir c'était très agréable. L'exercice final était plus un dialogue qu'une séance de questions, encore une fois très agréable.
Nous sommes très nombreux à préparer en même temps dans la même salle (une douzaine de personnes dans une petite salle). La température monte vite.
Je n'ai pas réussi à retrouver entièrement mon développement sur le théorème de Dixon pendant la préparation, développement qui est tombé au moment de l'oral. Ca ne met vraiment pas en confiance ! Pourtant, cela s'est quand même très bien passé, grâce à la réactivité et la bienveillance du jury. Corollaire : Rester concentré et motivé en toute circonstance !
18.25
Pas de réponse fournie.
Pas de réponse fournie.
Le jury commence par me poser des questions sur le développements:
* Réexpliquer pourquoi dans $\mathcal{A}_5$, si a est un $5$-cycle alors un autre $5$-cycle est conjugué de a ou a² (je l'avais expliqué à l'oral)*
* Donner un argument rapide pour dire que a et a² ne sont pas conjugués dans $\mathcal{A}_5$ (On regarde le cardinal de la classe de conjugaison de a qui est l'ensemble des $5$-cycles).
On en vient aux questions sur le plan:
* Je donne en application du premier théorème d'isomorphisme le théorème chinois, on me demande de préciser l'isomorphisme (donc de refaire la preuve) et d'indiquer comment en trouver la réciproque (en utilisant le théorème de Bézout).
On me demande alors si je connais un algorithme rapide de calcul des coefficients de cette écriture, j'ouvre grand les yeux de surprise et indique que je ne connais que l'algorithme d'Euclide étendu mais n'ai aucune idée de sa rapidité, on passe à autre chose.
*Dans mon plan je définis deux éléments conjugués comme deux éléments dans une même orbite pour l'action d'un groupe sur lui-même par conjugaison. On me fait remarqué qu'après j'applique cette définition aux matrices et on me demande si il n'y a pas un problème, je répond que oui puisque l'ensemble des matrices n'est pas un groupe multiplicatif (ndlr: il serait surement préférable de ne pas chercher à le définir et de se contenter de donner des exemples ou, même si je ne suis pas sûr que ca fonctionne, parler d'action des inversibles sur un anneau par conjugaison).
Premier exercice:
On se donne $G$ un p-groupe, on cherche à démontrer que pour tout diviseur $d$ du cardinal de $G$ il existe un sous-groupe de $G$ de cardinal $d$.
*J'énonce mon idée: démontrer l'existence d'un sous-groupe non trivial distingué et utiliser une récurrence forte et un passage au quotient pour obtenir le résultat.
*On me demande alors, logiquement, comment garantir l'existence d'un tel sous-groupe.
Je passe une minute à réfléchir à voix haute, dire toutes les bêtises qui me passent par la tête et à expliquer pourquoi ca ne fonctionne pas (parfois avec l'aide du jury). On me demande alors de donner la définition du centre d'un groupe, je la donne et fini par réagir? Je redémontre alors que le centre d'un p-groupe est non-trivial (on utilise la formule des classes, voir Perrin prop 4.15).
*On en revient alors au théorème.
Je donne le cardinal de l'image réciproque d'un sous-groupe $H$ de $G/Z(G)$ par la projection canonique (si $H$ est de cardinal $a$ et $Z(G)$ de cardinal $b$ l'image réciproque est de cardinal $ab$) et je dis qu'il faudrait redémontrer que c'est un sous-groupe, on me dit que ce n'est pas nécessaire,. Avec un peu d'aide du jury j'explique comment avec la récurrence forte on peut trouver un sous-groupe qui convient, soit en regardant un sous-groupe image réciproque par la projection canonique, soit en regardant un sous-groupe du centre.
Deuxième exercice:
Que dire de l'action par conjugaison de $O_n(\mathbf{R})$ sur $S_n(\mathbf{R})$ ?
* Je commence par montrer que cette action est bien définie.
* Je précise que le théorème spectral nous assure que l'orbite contient une matrice diagonale. On me demande si elle est unique. Je répond que non à cause de l'algorithme de Gauss et de la description des orbites pour l'action par congruence. On me demande si ce que je dis s'applique ici, je répond que non puisque c'est l'action de $Gl_n(\mathbf{R})$. On en reste là pour l'instant
Troisième exercice:
On considère une matrice réelle $A$ telle qu'elle soit semblable à $2A$, que dire de $A$ ?
*Ayant encore mon deuxième développement en tête je cherche à exprimer le polynôme caractéristique de $2A$ (noté $P_{2A}$) à partir de celui de $A$ (noté $P_A$). J'écris $P_{2A}=2^n\,P_A$, on me dit que l'idée est bonne mais que c'est faux. On me fait reprendre la définition, je montre alors que $P_{2A}(X)=2^n\,P_A(X/2)$ (où n est la taille de la matrice).
* Avec l'aide du jury je fini par dire que , puisque deux matrices semblables ont le même polynôme caractéristique $P_A(X)=2^n\,P_A(X/2)$, on m'indique que je peux conclure avec ça, je prends le temps de réfléchir et explique si $\lambda$ est une valeur propre non nul de $A$, alors c'est également le cas de $\lambda/2$, $\lambda/4$ etc, on a donc plus de valeurs propres que la dimension de l'espace, c'est absurde, $A$ est donc nilpotente.
Retour au deuxième exercice:
On considère la matrice $ \left(\begin{array}{ll}
1 & 0 \\
0 & 2 \\
\end{array}\right) $, donner une autre matrice diagonale dans son orbite.
Péniblement je fini par regarder ce que donne le conjugué par la matrice $ \left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
\end{array}\right) $ (c'est $ \left(\begin{array}{ll}
2 & 0 \\
0 & 1 \\
\end{array}\right) $). L'oral se termine là.
Le jury a été dans l'ensemble bienveillant bien que l'un des membres avait l'air parfois peu convaincu par mes réponses (mais ce n'était peut-être qu'une impression). Il n'hésitait pas à aider en donnant des indications ou en indiquant à creuser une piste.
Pas de surpise.
15
103 : Exemples de sous-groupes distinguées et de groupes quotients. Applications.
Pas de réponse fournie.
Pas de réponse fournie.
Pas de réponse fournie.
Pas de réponse fournie.
Pas de réponse fournie.
Pas de réponse fournie.
103 : Exemples de sous-groupes distinguées et de groupes quotients. Applications.
Pas de réponse fournie.
Pas de réponse fournie.
Quelques questions sur le dév (Lie Kolchin) notamment sur le côté groupe topologique : pour quelle topologie. J'ai dû détailler pourquoi la topologie usuelle sur Mn(C) donne bien que Gln(C) est un groupe topologique. Ils m'ont demandé beaucoup de détails pour juste dire que le produit et l'inverse étaient continus.
Apres je m'étais un peu planté dans la précipitation pour montrer que les sous groupes dérivés étaient bien connexes, donc ils m'ont demandé de redétailler ce point (conclusion : il faut vraiment relire son dev en entier avant de passer meme sur les points qu'on pense avoir bien en tete)
Ensuite ils m'ont demandé de donner D(SLn(C)) pour n>=3.
Ensuite j'ai du montrer que si G est un groupe de cardinal n non abélien, alors G/Z(G) ne peut pas etre cyclique.
Ensuite on m'a demandé de montrer que dans ce cas la (ie G non abélien), n/4 <= Card(Z(G)) <= n/2, ce qui (je m'en suis rendu compte a froid) est faux (on a card(Z(G)) <= n/4 puisque G/Z ne peut pas etre d'ordre 2 ou 3 ce qui le rendrait cyclique). Puis que quand g et h sont des variables aléatoires uniformes sur les éléments du groupe : Proba(gh = hg) <= 5/8 mais l'oral s'est arrêté avant que je commence a trouver quelque chose.
Le jury avait en moyenne une bonne attitude, ils me laissaient un peu de temps pour réfléchir et me filaient des tuyaux au bout de ce moment si je trouvais rien.
Oui, finalement on a a peu pres eu nos 3h de préparation, pas de grosse surprise.
17
103 : Exemples de sous-groupes distingués et de groupes quotients. Applications.
160 : Endomorphismes remarquables d'un espace vectoriel euclidien (de dimension finie).
Pas de réponse fournie.
Pas de réponse fournie.
Pas de réponse fournie.
Jury très bienveillant
Pas de réponse fournie.
Pas de réponse fournie.