Développement : A5 est l'unique groupe simple d'ordre 60

Détails/Enoncé :

$\mathfrak{A}_{5}$ est l'unique groupe simple d'ordre 60.

Autres années :

Versions :

  • Auteur :
  • Remarque :
    Recasages: 101, 103, 104, 105

    Page 277
    (On peut le trouver dans le Ulmer, en moins bien écrit)

    J'ai rédigé la preuve à l'envers, par rapport à Szpirglas: je montre d'abord que pour avoir le résultat, il suffit de déterminer l'existence d'un sous-groupe d'indice 5, puis je montre ladite existence.

    Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
  • Référence :
  • Fichier :
  • Auteur :
  • Remarque :
    *Mes développements n’ont pas été pensés pour être partagés au départ, vous excuserez mon écriture et mes notations un peu brouillonnes. Soyez vigilants sur les coquilles/erreurs possibles et critiques sur ce que vous lisez. N’hésitez pas à me contacter pour des clarifications.

    *La plupart de mes dévs contiennent un plan et un rappel des énoncés, pour être au clair sur ce qu’on a à disposition et ce qu’on veut faire.

    *Les recasages inscrits sur le document sont les numéros de 2023/2024.

    Recasages : 101 - 103 - 104 - 105 - 121
  • Référence :
  • Fichier :

Références utilisées dans les versions de ce développement :

Algèbre L3 , Szpirglas (utilisée dans 42 versions au total)