(2014 : 105 - Groupe des permutations d'un ensemble fini. Applications.)
Il faut relier rigoureusement les notions d'orbites et d'action de groupe. Il faut aussi savoir décomposer une permutation en cycles disjoints, tant sur le plan théorique (preuve du théorème de décomposition), que pratique (sur un exemple). Des dessins ou des graphes illustrent de manière commode ce que sont les permutations. Par ailleurs un candidat qui se propose de démontrer que tout groupe simple d'ordre 60 est isomorphe à $A_5$ devrait aussi savoir montrer que $A_5$ est simple.
L'existence du morphisme signature est un résultat non trivial mais ne peut pas constituer, à elle seule, l'objet d'un développement.
Comme pour toute structure algébrique, il est souhaitable de s'intéresser aux automorphismes du groupe symétrique. Les applications du groupe symétrique ne concernent pas seulement les polyèdres réguliers. Il faut par exemple savoir faire le lien avec les actions de groupe sur un ensemble fini. Il est important de savoir déterminer les classes de conjugaisons du groupe symétrique par la décomposition en cycles.