Algèbre L3

Szpirglas

Utilisés dans les 11 versions de développements suivants :

  • Développement :
  • Remarque :
    Recasages: 101, 103, 104, 105

    Page 277
    (On peut le trouver dans le Ulmer, en moins bien écrit)

    J'ai rédigé la preuve à l'envers, par rapport à Szpirglas: je montre d'abord que pour avoir le résultat, il suffit de déterminer l'existence d'un sous-groupe d'indice 5, puis je montre ladite existence.

    Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    Recasages : 151,159,160,161,181,253

    Lien direct vers le fichier : https://file.notion.so/f/s/1dcb3b75-ab4b-463c-b94b-d19aa384f9ba/Enveloppe_convexe_de_On(R).pdf?id=e7cc361a-8038-455d-b73d-71c3b0942b1a&table=block&spaceId=687bfd0e-1fc2-4484-9a48-571d8d7ee864&expirationTimestamp=1689890400000&signature=jswTPoVYRXlHyEUm1TIhveVrxZeg-bqjzU_FYxM2Fn0&downloadName=Enveloppe+convexe+de+On%28R%29.pdf

    Vous trouverez toutes mes ressources pour l'agrégation à cette adresse : https://www.notion.so/delbep/Agr-gation-c834c3492ca94b68b157e683e615536b?pvs=4
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    C'est une version de ce développement où le seul dénombrement qu'on fait, c'est dire que (Z/2Z)^k est de cardinal 2^k, et donc

    MA VERSION NE CONVIENT PAS POUR LA LECON 190 !!

    On démontre toujours la proposition sur l'automorphisme qui transforme les transpositions en transposition.

    Je pense que c'est un peu plus long et technique que ce qui est fait dans le Perrin, mais si vous n'aimez pas la combinatoire, c'est fait pour vous : on cherche à déterminer des propriétés sur la structure de deux stabilisateurs.

    C'est pour ça que je pense que CETTE VERSION convient pour la leçon 103 : conjugaison dans un groupe.
  • Référence :
  • Fichier :

Utilisés dans les 24 versions de leçons suivantes :