Ma version est une version "minimale" qui n'utilise pas Hahn-Banach, mais une version affaiblie du tout début de la démonstration de ce théorème dans un espace de Hilbert qui est très simple à démontrer.
Attention à bien préciser que l'on admet deux gros théorèmes pour ce développement : Caratheodory et la décomposition polaire.
NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
J'écris assez mal également, toutes mes excuses.
La version affaiblie de Hahn-Banach géométrique suffit largement pour ce développement à mon avis. Il y a bien assez de connaissances à avoir en tête pour le maîtriser avec Carathéodory, le dual de $\mathcal{M}_n(\mathbf{R})$ et la décomposition polaire.
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.