Développement : Enveloppe convexe de On(R)

Détails/Enoncé :

L'enveloppe convexe de $O_n(\mathbb{R})$ est la boule unité fermée de $M_n(\mathbb{R})$ pour la norme $||.||_2$.

Autres années :

Versions :

  • Auteur :
  • Remarque :
    D'après moi pour les leçons : 159, 161 et 181.

    Ma version est une version "minimale" qui n'utilise pas Hahn-Banach, mais une version affaiblie du tout début de la démonstration de ce théorème dans un espace de Hilbert qui est très simple à démontrer.
    Attention à bien préciser que l'on admet deux gros théorèmes pour ce développement : Caratheodory et la décomposition polaire.

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Références :
  • Fichier :
  • Auteur :
  • Remarque :
    Recasages : 151,159,160,161,181,253

    Lien direct vers le fichier : https://file.notion.so/f/s/1dcb3b75-ab4b-463c-b94b-d19aa384f9ba/Enveloppe_convexe_de_On(R).pdf?id=e7cc361a-8038-455d-b73d-71c3b0942b1a&table=block&spaceId=687bfd0e-1fc2-4484-9a48-571d8d7ee864&expirationTimestamp=1689890400000&signature=jswTPoVYRXlHyEUm1TIhveVrxZeg-bqjzU_FYxM2Fn0&downloadName=Enveloppe+convexe+de+On%28R%29.pdf

    Vous trouverez toutes mes ressources pour l'agrégation à cette adresse : https://www.notion.so/delbep/Agr-gation-c834c3492ca94b68b157e683e615536b?pvs=4
  • Référence :
  • Fichier :
  • Auteur :
  • Remarque :
    Ma version reprend les références, mais elle reste quand même très différente.
    En fait, j'ai travaillé le développement à l'aide des références, puis j'ai enlevé les arguments qui ne servaient pas. Au final, j'ai conservé une trame de preuve similaire, mais les détails diffèrent par moments. C'est un développement particulier à travailler avec soin, de mon point de vue.

    Et aussi, j'ai un peu plus détaillé certains passages passés sous silence par les références.

    Attention aux coquilles.
  • Références :
  • Fichier :
  • Auteur :
  • Remarque :
    Résultat plutôt mignon ! Je pense que c'est un développement qui peut amener des questions assez dures (on utilise Hahn-Banach affaibli, des résultats en tout genre sur On(R) etc.) donc je le qualifierai de développement plutôt dur.

    Je le prends pour les leçons 159, 161 et 181.

    On trouvera la preuve aux alentours de la page 344 du Szpirglas et on utilise le théorème I.7 du Brézis (pour Hahn-Banach).
  • Références :
  • Fichier :

Références utilisées dans les versions de ce développement :

Algèbre L3 , Szpirglas (utilisée dans 43 versions au total)
Objectif Agrégation, Beck, Malick, Peyré (utilisée dans 251 versions au total)
Analyse pour l'agrégation, Queffelec, Zuily (utilisée dans 178 versions au total)
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte (utilisée dans 132 versions au total)
Analyse fonctionelle , Brézis (utilisée dans 27 versions au total)