Leçon 159 : Formes linéaires et dualité en dimension finie. Exemples et applications.

(2019) 159
(2021) 159

Dernier rapport du Jury :

(2019 : 159 - Formes linéaires et dualité en dimension finie. Exemples et applications.) Il est important de bien placer la thématique de la dualité dans cette leçon ; celle-ci permet de mettre en évidence des correspondances entre un morphisme et son morphisme transposé, entre un sous-espace et son orthogonal (canonique), entre les noyaux et les images ou entre les sommes et les intersections. Bon nombre de résultats d’algèbre linéaire se voient dédoublés par cette correspondance. Les liens entre base duale et fonctions de coordonnées doivent être parfaitement connus. Le passage d’une base à sa base duale ou antéduale, ainsi que les formules de changement de base, doivent être maîtrisés. On pourra s’intéresser aux cas spécifiques où l’isomorphisme entre l’espace et son dual est canonique (cas euclidien, cas des matrices). $\\$ Savoir calculer la dimension d’une intersection d’hyperplans via la dualité est important dans cette leçon. L’utilisation des opérations élémentaires sur les lignes et les colonnes permet facilement d’obtenir les équations d’un sous-espace vectoriel ou d’exhiber une base d’une intersection d’hyperplans. $\\$ Cette leçon peut être traitée sous différents aspects : géométrique, algébrique, topologique ou analytique. Il faut que les développements proposés soient en lien direct avec la leçon. Enfin rappeler que la différentielle d’une fonction à valeurs réelles est une forme linéaire semble incontournable. $\\$ Il est possible d’illustrer la leçon avec un point de vue probabiliste, en rappelant que la loi d’un vecteur aléatoire $X$ est déterminée par les lois unidimensionnelles de $X \dot u$ pour tout vecteur $u$.

(2017 : 159 - Formes linéaires et dualité en dimension finie. Exemples et applications.) Il est important de bien placer la thématique de la dualité dans cette leçon ; celle-ci permet de mettre en évidence des correspondances entre un morphisme et son morphisme transposé, entre un sous-espace et son orthogonal (canonique), entre les noyaux et les images ou entre les sommes et les intersections. Bon nombre de résultats d’algèbre linéaire se voient dédoublés par cette correspondance. Les liens entre base duale et fonctions de coordonnées doivent être parfaitement connus. Savoir calculer la dimension d’une intersection d’hyperplans via la dualité est important dans cette leçon. L’utilisation des opérations élémentaires sur les lignes et les colonnes permet facilement d’obtenir les équations d’un sous-espace vectoriel ou d’exhiber une base d’une intersection d’hyperplans. Cette leçon peut être traitée sous différents aspects : géométrique, algébrique, topologique ou analytique. Il faut que les développements proposés soient en lien direct avec la leçon. Enfin rappeler que la différentielle d’une fonction à valeurs réelles est une forme linéaire semble incontournable. Il est possible d’illustrer la leçon avec un point de vue probabiliste, en rappelant que la loi d’un vecteur aléatoire X est déterminée par les lois unidimensionnelles de $X \cdot u$ pour tout vecteur $u$.
(2016 : 159 - Formes linéaires et dualité en dimension nie. Exemples et applications.) Il est important de bien placer la thématique de la dualité dans cette leçon ; celle-ci permet de mettre en évidence des correspondances entre un morphisme et son morphisme transposé, entre un sous-espace et son orthogonal (canonique), entre les noyaux et les images ou entre les sommes et les intersections. Bon nombre de résultats d’algèbre linéaire se voient dédoublés par cette correspondance. Les liens entre base duale et fonctions de coordonnées doivent être parfaitement connus. Savoir calculer la dimension d’une intersection d’hyperplans via la dualité est important dans cette leçon. L’utilisation des opérations élémentaires sur les lignes et les colonnes permet facilement d’obtenir les équations d’un sous-espace vectoriel ou d’exhiber une base d’une intersection d’hyperplans. Cette leçon peut être traitée sous différents aspects : géométrique, algébrique, topologique ou analytique. Il faut que les développements proposés soient en lien direct avec la leçon. Enfin rappeler que la différentielle d’une fonction à valeurs réelles est une forme linéaire semble incontournable.
(2015 : 159 - Formes linéaires et dualité en dimension finie. Exemples et applications.) Il est important de bien placer la thématique de la dualité dans cette leçon : celle-ci permet de créer une correspondance féconde entre un morphisme et son morphisme transposé, un sous-espace et son orthogonal (canonique), les noyaux et les images, les sommes et les intersections. Bon nombre de résultats d'algèbre linéaire se voient dédoublés par cette correspondance. Les liens entre base duale et fonctions de coordonnées doivent être parfaitement connus. Savoir calculer la dimension d'une intersection d'hyperplans via la dualité est important dans cette leçon. L'utilisation des opérations élémentaires sur les lignes et les colonnes permet facilement d'obtenir les équations d'un sous-espace vectoriel ou d'exhiber une base d'une intersection d'hyperplans. Cette leçon peut être traitée sous différents aspects : géométrique, algébrique, topologique, analytique, etc. Il faut que les développements proposés soient en lien direct, comme toujours, avec la leçon ; proposer la trigonalisation simultanée est un peu osé ! Enfin rappeler que la différentielle d'une fonction réelle est une forme linéaire semble incontournable.
(2014 : 159 - Formes linéaires et dualité en dimension finie. Exemples et applications.) Il est important de bien placer la thématique de la dualité dans cette leçon : celle-ci permet de créer une correspondance féconde entre un morphisme et son morphisme transposé, un sous-espace et son orthogonal (canonique), les noyaux et les images, les sommes et les intersections. Bon nombre de résultats d'algèbre linéaire se voient dédoublés par cette correspondance. Les liens entre base duale et fonctions de coordonnées doivent être parfaitement connus. Savoir calculer la dimension d'une intersection d'hyperplans est important dans cette leçon. L'utilisation des opérations élémentaires sur les lignes et les colonnes permet facilement d'obtenir les équations d'un sous-espace vectoriel ou d'exhiber une base d'une intersection d'hyperplans. Cette leçon peut être traitée sous différents aspects : géométrique, algèbrique, topologique, analytique, etc. Il faut que les développements proposés soient en lien direct, comme toujours, avec la leçon ; proposer la trigonalisation simultanée est un peu osé ! Enfin rappeler que la différentielle d'une fonction réelle est une forme linéaire semble incontournable.

Plans/remarques :

2020 : Leçon 159 - Formes linéaires et dualité en dimension finie. Exemples et applications.

  • Auteur :
  • Remarque :
    Je suis passé sur cette leçon. Mon plan n'est pas tout à fait celui que j'avais proposé le jour J, j'avais mis beaucoup plus de Frobenius, ce qui leur a bien plus.

    Toutes les références sont à la fin du plan.

    Mes excuses pour l'écriture, et attention aux coquilles...
  • Fichier :

2019 : Leçon 159 - Formes linéaires et dualité en dimension finie. Exemples et applications.


2018 : Leçon 159 - Formes linéaires et dualité en dimension finie. Exemples et applications.


2017 : Leçon 159 - Formes linéaires et dualité en dimension finie. Exemples et applications.


2016 : Leçon 159 - Formes linéaires et dualité en dimension nie. Exemples et applications.


2015 : Leçon 159 - Formes linéaires et dualité en dimension finie. Exemples et applications.


Retours d'oraux :

2020 : Leçon 159 - Formes linéaires et dualité en dimension finie. Exemples et applications.

  • Leçon choisie :

    159 : Formes linéaires et dualité en dimension finie. Exemples et applications.

  • Autre leçon :

    125 : Extensions de corps. Exemples et applications.

  • Développement choisi : (par le jury)

    Espace tangent et extrema liés

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Je suis passé en 2021, pas en 2020 mais le site ne permet pas d'effectuer de retour pour cette année au moment où je l'écris.

    Questions sur le développement :
    1) réexpliquer le lemme sur les formes linéaires nécessaire à la démonstration du théorème comme si je devais le faire devant une classe
    2) ce dernier est-il toujours vrai si les formes linéaires ne sont pas indépendantes ?
    3) exemple ou l'espace tangent n'est pas un espace vectoriel ? Je n'en avais aucune idée donc le membre du jury m'a demandé de considérer un lemniscate, et notamment où ça clochait (le point du centre ne permet pas de créer un $C^1$ difféomorphisme dans son voisinage, problème d'injectivité)

    Autres questions :
    1) donner un exemple où la famille duale n'est pas une base (prendre $\mathbb{R}[X]$, la base des $(X^n)$ et la forme linéaire $P \mapsto P(1)$)
    2) faire l'application des extrema liés à la quadrique (Exo Directions principales d'une quadrique p408 dans le PGdCD de Rouvière, 4e édition)
    3) quel rapport entre la leçon et la différentielle ?
    4) déterminer le gradient du déterminant (je ne suis pas allé au bout, mais j'ai plus ou moins compris que c'était la comatrice)
    5) l'application $M \mapsto \Phi_M : X \mapsto Tr(XM)$ est un isomorphisme de $M_n(\mathbb{R})$ vers son dual. Quelle est sa norme ($M_n(\mathbb{R})$ est muni de la norme de Frobenius) ? (c'est une isométrie)

    --- u est maintenant un endomorphisme d'un ev de dimension finie --

    6) rapport entre Frobenius et les formes linéaires ? "Démontrer" la partie où il existe un supplémentaire stable au sous espace engendré par un vecteur u-maximal. Ils voulaient juste la formule que l'on peut trouver dans le livre de G. Berhuy : Algèbre, le grand combat tout en haut de la page 1020 (deuxième édition)
    7) démontrer l'existence d'un vecteur u maximal

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était extrêmement poli, courtois, me disait une petite phrase lorsque visiblement je n'avançais pas ou que j'allais faire une grosse c***rie alors que j'étais près du but.

    Surtout réfléchir à voix haute qu'ils voient bien où ça coince pour qu'ils vous débloquent (enfin, s'ils ont envie...).

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Rien à signaler, organisation absolument impeccable.

  • Note obtenue :

    18.75


2016 : Leçon 159 - Formes linéaires et dualité en dimension nie. Exemples et applications.

  • Leçon choisie :

    159 : Formes linéaires et dualité en dimension nie. Exemples et applications.

  • Autre leçon :

    109 : Représentations de groupes finis de petit cardinal.

  • Développement choisi : (par le jury)

    Pas de réponse fournie.

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Questions sur le plan, ils m'ont fait corrigé une bébé erreur. Et sur mes annexes (pivot de Gauss pour obtenir des équations de sev)
    Detailler un point de mon développement.
    Exos :
    - Prouver la formule de changement de base dans la base duale
    - Montrer que tout endomorphisme d'un C-ev de dimension finie admet un hyperplan stable (bizarre qu'ils m'aient demandé celui là vu mon plan qui mettait en avant pas mal d'application de la transposition déjà)
    - l'exo classique sur les intersections d'hyperplan (que j'ai oublié de rajouter dans mon plan..)
    - montrer à la main (sans les bases antéduales), que deux formes linéaires définissent le même hyperplan ssi elles sont proportionnelles avec un coeff non nul

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le plus neutre du monde possible.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Je voulais les titiller avec Hahn Banach (j'avais révisé la preuve) mais ils en ont pas parlé.
    Bon oral cependant je pense !

  • Note obtenue :

    16.25


Références utilisées dans les versions de cette leçon :

Algèbre , Gourdon (utilisée dans 237 versions au total)
Analyse , Gourdon (utilisée dans 400 versions au total)
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas (utilisée dans 114 versions au total)
Objectif Agrégation, Beck, Malick, Peyré (utilisée dans 214 versions au total)
Cours d'algèbre , Perrin (utilisée dans 285 versions au total)
Analyse fonctionelle , Brézis (utilisée dans 25 versions au total)
Petit guide de calcul différentiel , Rouvière (utilisée dans 135 versions au total)
Introduction aux variétés différentielles , Lafontaine (utilisée dans 15 versions au total)
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi (utilisée dans 276 versions au total)
Algèbre L3 , Szpirglas (utilisée dans 37 versions au total)