Utilisés dans les 46 versions de développements suivants :
Lemme de Morse
-
Développement :
-
Référence :
-
Fichier :
Méthode de Newton
-
Développement :
-
Références :
-
Fichier :
Lemme de Morse
-
Développement :
-
Référence :
-
Fichier :
Lemme de Morse
-
Développement :
-
Référence :
-
Fichier :
Théorème d'inversion locale
-
Développement :
-
Références :
-
Fichier :
Méthode de Newton
-
Développement :
-
Références :
-
Fichier :
Lemme de Morse
-
Développement :
-
Référence :
-
Fichier :
Méthode de Newton
-
Développement :
-
Références :
-
Fichier :
Théorème du point fixe de Brouwer
-
Développement :
-
Remarque :
Mis à jour le 27.05.17
-
Référence :
-
Fichier :
Différentielle du déterminant
-
Développement :
-
Remarque :
Mis à jour le 5.06.17
-
Référence :
-
Fichier :
Extrema liés
-
Développement :
-
Références :
-
Fichier :
Lemme de Morse
-
Développement :
-
Référence :
-
Fichier :
Méthode de Laplace
-
Développement :
-
Référence :
-
Fichier :
Théorème de Liapounov
-
Développement :
-
Référence :
-
Fichier :
Hahn Banach (version analytique) en dimension finie
-
Développement :
-
Références :
Théorème de Liapounov
-
Développement :
-
Référence :
-
Fichier :
Différentiabilité de l'exponentielle de matrices
-
Développement :
-
Référence :
-
Fichier :
Théorème du relèvement
-
Développement :
-
Référence :
-
Fichier :
Point de Fermat d'un triangle
-
Développement :
-
Remarque :
Nous montrons l'égalité entre ces trois angles au moyen du calcul différentiel. Nous prouvons que le minimum est strict en justifiant que $f$ est strictement convexe sur tout ouvert convexe ne contenant pas $A,B$ ni $C$ (sur de tels domaines, $f$ est $C^{\infty}$ donc il est possible de différentier deux fois).
Attention, Rouvière n'utilise pas cet argument dans sa correction. Il utilise un argument géométrique pour prouver l'unicité (mais alors ça se recase moins...)
-
Référence :
-
Fichier :
Critères de convexité d'une fonction différentiable, application à la recherche d'extremums
Lemme de Morse
-
Développement :
-
Référence :
-
Fichier :
Méthode de Newton
-
Développement :
-
Référence :
-
Fichier :
Lemme de Morse
-
Développement :
-
Référence :
-
Fichier :
Méthode de Newton
-
Développement :
-
Référence :
-
Fichier :
Théorème de Liapounov
-
Développement :
-
Références :
-
Fichier :
Caractérisation des fonctions différentiables convexes
-
Développement :
-
Références :
Méthode de Newton
-
Développement :
-
Référence :
-
Fichier :
Lemme de Morse
-
Développement :
-
Référence :
-
Fichier :
Théorème de Liapounov
-
Développement :
-
Référence :
-
Fichier :
Lemme de Morse
-
Développement :
-
Remarque :
D'après moi pour les leçons : 151, 158, 170, 171, 214 et 215.
Ma version du lemme préliminaire est assez fortement modifiée par rapport à celle de l'excellent livre de F. Rouvière.
Une application relativement simple du lemme de Morse est la distance au plan tangent (exercice 111 p341 de la 4e édition du même ouvrage).
NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
J'écris assez mal également, toutes mes excuses.
-
Référence :
-
Fichier :
Théorème d'interversion limite et différentielle
-
Développement :
-
Remarque :
D'après moi pour les leçons : 204 et 215.
C'est un développement que j'avais préparé au cas où et qui est version fortement modifiée de celle du livre de F. Rouvière pour utiliser de la connexité.
Je le partage pour la forme, il y a bien mieux pour ces deux leçons.
Peut-être juste savoir que c'est une application importante de l'inégalité des accroissements finis.
NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
J'écris assez mal également, toutes mes excuses.
-
Référence :
-
Fichier :
Différentielle du déterminant
Différentiabilité de l'exponentielle de matrices
Espace tangent et extrema liés
-
Développement :
-
Références :
-
Fichier :
Lemme de Morse
-
Développement :
-
Référence :
-
Fichier :
Différentiabilité de l'exponentielle de matrices
-
Développement :
-
Référence :
-
Fichier :
Différentielle du déterminant
-
Développement :
-
Référence :
-
Fichier :
Différentielle du déterminant
-
Développement :
-
Référence :
-
Fichier :
Espace tangent et extrema liés
Description géométrique des normes
-
Développement :
-
Références :
Inégalité de Hadamard (par le th des extrema liés)
-
Développement :
-
Remarque :
voir Rouvière page 409
-
Référence :
Lemme de Morse
-
Développement :
-
Référence :
-
Fichier :
Critères de convexité d'une fonction différentiable, application à la recherche d'extremums
-
Développement :
-
Référence :
-
Fichier :
Utilisés dans les 52 versions de leçons suivantes :
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
218 : Applications des formules de Taylor.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 12.05.17
-
Références :
-
Fichier :
207 : Prolongement de fonctions. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 14.05.17
-
Références :
-
Fichier :
228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 18.05.17
-
Références :
-
Fichier :
202 : Exemples de parties denses et applications.
-
Leçon :
-
Remarque :
Mis à jour le 19.05.17
-
Références :
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse fonctionnelle - Théorie et applications, Brezis, Haim
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Algèbre
, Gourdon
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Cours d'analyse
, Pommelet
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse réelle et complexe
, Rudin
-
Fichier :
204 : Connexité. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 25.05.17
-
Références :
-
Fichier :
209 : Approximation d'une fonction par des polynômes et et des polynômes trigonométriques. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
214 : Théorème d'inversion locale, théorème des fonctions implicites. Exemples et applications en analyse et en géométrie.
-
Leçon :
-
Références :
-
Fichier :
150 : Exemples d’actions de groupes sur les espaces de matrices.
-
Leçon :
-
Références :
-
Histoires hédonistes de groupes et géométries, Tome 1, Caldero, Germoni
-
Algèbre linéaire réduction des endomorphismes, R. Mansuy, R. Mneimné
-
Petit guide de calcul différentiel
, Rouvière
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Algèbre
, Gourdon
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples. Applications.a la r ́esolution approch ́ee d’ ́equatio
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Fichier :
214 : Théorème d’inversion locale, théorème des fonctions implicites. Exemples et applications en analyse et en géométrie.
-
Leçon :
-
Remarque :
J'aime beaucoup cette leçon. J'aurais peut-être dû ne pas faire de schéma du folium pour gagner de la place pour les autres schémas. Il faut être au point sur les preuves usuelles de la leçon (dont inversion locale !). Il aurait été bon que je mette plus d'exemples "pratiques" ou plus développés mais... j'avais besoin de place pour bien traiter la géo diff.
Petits typos :
-dans l'ex2, il faut préciser que les intervalles sont ouverts, et je ne parle pas d'un cercle mais d'un disque
-dans mes propriétés 29 et 30, il est plus juste d'écrire "Localement, à difféomorphisme près" ou "A difféomorphismes locaux près" : il n'y a pas unicité du difféo...
A propos des refs, Lafontaine traite très bien la géodiff et l'inversion locale. Objectif Agrégation est une perle pour les applications et les schémas. Rouvière est très bien pour les exemples et applications, mais je n'aime vraiment pas son formalisme dans le cours (il se perd dans des formulations analytiques au lieu de parler d'injectivité/surjectivité des différentielles...).
En bref, une leçon très plaisante, où l'on a énormément de choses à dire - il ne faut pas trainer le jour J.
-
Références :
-
Fichier :
150 : Exemples d’actions de groupes sur les espaces de matrices.
-
Leçon :
-
Références :
-
Histoires hédonistes de groupes et géométries, Tome 1, Caldero, Germoni
-
Objectif Agrégation, Beck, Malick, Peyré
-
Algèbre
, Gourdon
-
Cours d'algèbre
, Perrin
-
Groupes de Lie classiques, Mneimné, Testard
-
Petit guide de calcul différentiel
, Rouvière
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Références :
-
Algèbre
, Gourdon
-
Analyse
, Gourdon
-
Algèbre linéaire
, Grifone
-
Cours d'algèbre
, Perrin
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Petit guide de calcul différentiel
, Rouvière
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Fichier :
159 : Formes linéaires et dualité en dimension finie. Exemples et applications.
-
Leçon :
-
Références :
-
Algèbre
, Gourdon
-
Analyse
, Gourdon
-
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas
-
Objectif Agrégation, Beck, Malick, Peyré
-
Cours d'algèbre
, Perrin
-
Analyse fonctionelle
, Brézis
-
Petit guide de calcul différentiel
, Rouvière
-
Fichier :
204 : Connexité. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Topologie
, Queffelec
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse réelle et complexe
, Rudin
-
Histoires hédonistes de groupes et géométries, Tome 1, Caldero, Germoni
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
215 : Applications différentiables définies sur un ouvert de R^n. Exemples et applications.
214 : Théorème d’inversion locale, théorème des fonctions implicites. Exemples et applications en analyse et en géométrie.
-
Leçon :
-
Références :
-
Fichier :
220 : Équations différentielles ordinaires. Exemples de résolution et d’étude de solutions en dimension 1 et 2.
-
Leçon :
-
Références :
-
Fichier :
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1=f(un). Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Références :
-
Fichier :
215 : Applications différentiables définies sur un ouvert de R^n. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Remarque :
Plan qui ne va pas très loin sur les coniques, mais à mon avis ce n'est clairement pas le coeur de la leçon. Il faut juste au moins les mentionner, car c'est tout de même une application remarquable des formes quadratiques.
-
Références :
-
Fichier :
191 : Exemples d’utilisation des techniques d’algèbre en géométrie.
215 : Applications différentiables définies sur un ouvert de R^n. Exemples et applications.
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
Leçon assez difficile par sa simplicité ...
J'ai, au cours de l'année, remplacé la troisième partie par l'exemple remarquable des suites récurrentes, afin de renforcer le côté "exemple", et en même temps applications puisqu'on utilise beaucoup les suites récurrentes pour la résolution d'équations notamment.
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Analyse
, Gourdon
-
Analyse numérique, Une approche mathématique, Michelle Schatzman
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Fichier :
228 : Continuité, dérivabilité, dérivation faible des fonctions réelles d’une variable réelle. Exemples et applications.
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1=f(un). Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Références :
-
Fichier :
214 : Théorème d’inversion locale, théorème des fonctions implicites. Exemples et applications en analyse et en géométrie.
-
Leçon :
-
Références :
-
Fichier :
170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.
-
Leçon :
-
Références :
-
Fichier :
158 : Matrices symétriques réelles, matrices hermitiennes.
-
Leçon :
-
Références :
-
Fichier :
152 : Déterminant. Exemples et applications.
215 : Applications différentiables définies sur un ouvert de R^n. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Mathématiques pour l'agrégation: Algèbre et géométrie : Jean Etienne Rombaldi
[Gri] Algèbre linéaire : Grifone
[H2G2] Histoires hédonistes de groupes et géométries, Tome 1 : Caldero, Germoni
[Rou] Petit guide de calcul différentiel : Rouvière
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
-
Références :
-
Fichier :
204 : Connexité. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Has] Topologie générale et espaces normés : Hage Hassan
[Rou] Petit guide de calcul différentiel : Rouvière
[Tau] Analyse complexe pour la Licence 3 : Tauvel
[Zad] Un max de maths : Zavidovique
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Calcul Différentiel : El Amrani (pas référencé par agregmaths)
[GouAn] Analyse : Gourdon
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Les] 131 Développements pour l’oral : D. Lesesvre
[Rou] Petit guide de calcul différentiel : Rouvière
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
[Gri] Algèbre linéaire : Grifone
-
Références :
-
Analyse
, Gourdon
-
Cours d'analyse fonctionnelle, Daniel Li
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Algèbre linéaire
, Grifone
-
Fichier :
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1 = f(un). Exemples. Applications à la résolution approchée d’équations.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[RDO] Cours de mathématiques, topologie et éléments d'analyse Tome 3 : Ramis, Deschamps, Odoux
[GouAn] Analyse : Gourdon
[Rom] Elements d'analyse réelle : Rombaldi
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
[NR] No Reference :(
[Rou] Petit guide de calcul différentiel : Rouvière
-
Références :
-
Fichier :
152 : Déterminant. Exemples et applications.
-
Leçon :
-
Références :
-
Cours de Mathématiques - 1 Algèbre, Arnaudiès - Fraysse
-
Objectif Agrégation, Beck, Malick, Peyré
-
Algèbre linéaire
, Cognet
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Algèbre
, Gourdon
-
Analyse
, Gourdon
-
Petit guide de calcul différentiel
, Rouvière
-
Algèbre
, Tauvel
-
Fichier :
220 : Équations différentielles ordinaires. Exemples de résolution et d’études de solutions en dimension 1 et 2.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Analyse fonctionelle
, Brézis
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Oraux X-ENS Analyse 3, Francinou, Gianella, Nicolas
-
Elements d'analyse fonctionnelle
, Hirsch
-
Cours d'analyse
, Pommelet
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
215 : Applications différentiables définies sur un ouvert de R^n . Exemples et applications.
206 : Exemples d’utilisation de la notion de dimension finie en analyse
-
Leçon :
-
Remarque :
Références en fin de plan.
C’est une leçon très vaste dans laquelle on peut mettre beaucoup de choses. J’ai choisi de me concentrer sur les espaces vectoriels normés, le calcul différentiel et les espaces préhilbertiens, avec les séries de Fourier. En partie IV, je donne d’autres applications possibles.
Développements :
1) Équivalence des normes et théorème de Riesz [je ne l’ai pas encore appris, si c’est trop court je rajouterai le contre-exemple 4]
2) Lemme de Morse
Plan :
I. Espaces vectoriels normés
1) Toplogie
2) Applications linéaires
3) Compacité
II. Calcul différentiel
1) Différentielle et dérivée partielle
2) Théorème d’inversion locale et lemme de Morse
III. Espaces préhilbertiens et séries de Fourier
1) Projection orthogonale dans un espace préhilbertien
2) Application aux séries de Fourier
IV. Autres applications possibles
1) Optimisation en dimension finie
2) Équations différentielles
On aurait aussi pu parler de la mesure de Lebesgue. Le Briane Pagès le fait très bien. De même, dans la partie Calcul Différentiel, on peut aussi évoquer les matrices jacobiennes (c’est fait dans le Gourdon) et les espaces tangents pour aller plus loin.
On peut aussi taper dans des notions plus difficiles (notamment dans tout ce qui est lié aux opérateurs) mais mon niveau ne me le permet pas xD
-
Références :
-
Fichier :
206 : Exemples d’utilisation de la notion de dimension finie en analyse
-
Leçon :
-
Références :
-
Fichier :