Utilisée dans les 24 versions de développements suivants :
Théorème de Stone-Weierstrass
-
Développement :
-
Remarque :
Mis à jour le 29.05.17
-
Référence :
-
Fichier :
Théorème de Lax-Milgram et une application
-
Développement :
-
Références :
-
Fichier :
Étude d'une norme dans un Hilbert
Projection sur un convexe fermé
Théorème de Stone-Weierstrass
-
Développement :
-
Référence :
-
Fichier :
Projection sur un convexe fermé
Théorème de Stone-Weierstrass
Projection sur un convexe fermé
-
Développement :
-
Références :
-
Fichier :
Théorème de Stone-Weierstrass
-
Développement :
-
Référence :
-
Fichier :
Projection sur un convexe fermé
-
Développement :
-
Remarque :
Recasages: 213, 219, 253
Page 91
J'y ai mis les preuves de la projection, la caractérisation par l'angle obtus, la caractérisation dans le cas d'un sev, la décomposition en somme orthogonale et Riesz (c'est trop long pour faire un dév, il faut sélectionner les preuves qu'on veut présenter).
Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
-
Référence :
-
Fichier :
Théorème de Stone-Weierstrass
-
Développement :
-
Remarque :
Recasages: 201, 203, 209
Page 29
Commentaires en fin de document.
Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
-
Référence :
-
Fichier :
Théorème de Stone-Weierstrass
-
Développement :
-
Référence :
-
Fichier :
Théorème de Riesz-Fréchet-Kolmogorov
-
Développement :
-
Références :
-
Fichier :
Opérateurs de Hilbert-Schmidt, étude et complétude
-
Développement :
-
Remarque :
Un développement qui utilise toute l'artillerie des espaces de Hilbert, qui utilise un nombre incalculable de fois l'égalité de Bessel et qui fera des merveilles dans les leçons 205, 208 et 213 ! Il y a de la matière dans ce développement, alors démontrez ce que vous maîtrisez le mieux ! Comme dit au début de ce développement, n'oubliez pas de donner des exemples d'opérateurs de Hilbert-Schmidt et d'opérateurs qui sont continus, mais pas de Hilbert-Schmidt, voire des exemples d'opérateurs compacts qui ne sont pas de Hilbert-Schmidt ! Un exemple est le suivant : si $(a_n)_{n \in \mathbb{N}} \in c_0(\mathbb{N}) \setminus \ell^2(\mathbb{N})$, alors l'opérateur :
\[
T : (u_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}) \longmapsto (a_nu_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})
\]
est compact, mais pas de Hilbert-Schmidt !
-
Références :
-
Fichier :
Théorème de Stone-Weierstrass
Projection sur un convexe fermé
Projection sur un convexe fermé
Projection sur un convexe fermé
-
Développement :
-
Référence :
-
Fichier :
Théorème de projection sur un convexe fermé
-
Développement :
-
Remarque :
C'est un développement ultra classique, pas très difficile, qui se recase bien... Je crois que c'était mon préféré !
Avec l'entraînement (et parce que j'écris à 1000 à l'heure), je faisais tout ça en moins de 15 minutes mais en prenant le temps de bien expliquer ce qu'on fait, ce qu'on va faire... ça tient !
-
Référence :
-
Fichier :
Théorème de Stone-Weierstrass
-
Développement :
-
Remarque :
Je recase ce développement dans 201, 203, 209 (c'est bon) et dans 228 (là c'est moins bon car ça dépasse le cadre réel... Il faut justifier par le fait qu'on l'utilise dans le cadre pour justifier la densité des fonctions polynômiales, des polynômes trigonométriques, des fonctions lipschitziennes, des fonctions affines par morceaux...) Il faut aussi insister sur les endroits où on utilise la continuité des fonctions.
Même si tout est fait dans le Hirsch-Lacombe, ce développement mérite d'être bien travaillé pour vérifier si on a bien compris tous les arguments. Il faut aussi savoir comment on construit la suite de polynômes qui converge uniformément vers la valeur absolue sur $[-1;1]$. On utilise pour cela un théorème de Dini qu'il faut également savoir démontrer.
-
Référence :
-
Fichier :
Optimisation dans un Hilbert
Théorème de Banach-Alaoglu
Propriétés des opérateurs compacts
-
Développement :
-
Remarque :
Ce développement est assez difficile. Dans mon document, je détaille un certain nombre de propriétés sur le spectre des opérateurs compacts. Pour en faire un développement il faut en choisir quelque une et les démontrés. Cela demande de se tester sur 15min. Pour savoir quoi montrer en 15 min je conseille de regarder la version de Malartre.
Le lien vers mon document:
https://perso.eleves.ens-rennes.fr/people/thomas.courant/Agr%C3%A9gation.html
-
Références :
-
Fichier :
Projection sur un convexe fermé
-
Développement :
-
Remarque :
Mes documents sont longs, déjà parce que je parle vite (donc il faut beaucoup de contenus), que j'écris gros, et que j'aime bien comprendre dans les détails, mais aussi et surtout parce qu'il y a beaucoup de remarques/infos à la fin, pour essayer d'être capable de répondre au max de questions liées au dev !
Evidemment, il est fort possible qu'il y ait des coquilles de ci de là, n'hésitez pas à me les signaler !
(Bon courage !)
-
Référence :
-
Fichier :
Utilisée dans les 76 versions de leçons suivantes :
201 : Espaces de fonctions ; exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 12.05.17
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 11.05.17
-
Références :
-
Analyse fonctionnelle - Théorie et applications, Brezis, Haim
-
Analyse numérique et équation différentielle
, Demailly
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Topologie
, Queffelec
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Topologie. Espaces fonctionnels
, Tisseron
-
Cours de mathématiques MP-MP*, Voedts, Jean
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 17.05.17
-
Références :
-
Fichier :
202 : Exemples de parties denses et applications.
-
Leçon :
-
Remarque :
Mis à jour le 19.05.17
-
Références :
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse fonctionnelle - Théorie et applications, Brezis, Haim
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Algèbre
, Gourdon
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Cours d'analyse
, Pommelet
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse réelle et complexe
, Rudin
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Remarque :
Mis à jour le 29.05.17
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications
-
Leçon :
-
Références :
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Analyse
, Gourdon
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse fonctionelle
, Brézis
-
Théorie des distributions
, Bony
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse numérique et équation différentielle
, Demailly
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse numérique et équation différentielle
, Demailly
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Objectif Agrégation, Beck, Malick, Peyré
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Références :
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Analyse numérique et équation différentielle
, Demailly
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse
, Gourdon
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Analyse fonctionelle
, Brézis
-
Cours d'analyse
, Pommelet
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Elements d'analyse fonctionnelle
, Hirsch
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Analyse
, Gourdon
-
Analyse fonctionnelle - Théorie et applications, Brezis, Haim
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Fichier :
228 : Continuité, dérivabilité, dérivation faible des fonctions réelles d’une variable réelle. Exemples et applications.
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Calcul intégral, Candelpergher
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications
-
Leçon :
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications
228 : Continuité, dérivabilité, dérivation faible des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
234 : Fonctions et espaces de fonctions Lebesgue-intégrables.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Analyse fonctionelle
, Brézis
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Oraux X-ENS Analyse 3, Francinou, Gianella, Nicolas
-
Elements d'analyse fonctionnelle
, Hirsch
-
Cours d'analyse
, Pommelet
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse fonctionnelle - Théorie et applications, Brezis, Haim
-
Analyse complexe pour la Licence 3, Tauvel
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
235 : Problèmes d’interversion en analyse.
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
206 : Exemples d’utilisation de la notion de dimension finie en analyse
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Remarque :
Plan réalisé durant un oral blanc de fin d'année (j'avais préparé la leçon durant l'année, quand même). On peut aller bien plus loin, mais l'exemple 37 est déjà une porte ouverte à bien trop de questions d'analyse spectrale… (cf. plan de EWna)
L'application 30 est un exemple en lien avec un de mes devs pour une autre leçon, il est assez drôle de recaser ainsi du savoir, pour de potentielles questions à l'oral, surtout pour une leçon d'exemples comme celle-ci.
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Ébauche de plan, que je publie car je trouvais la structure globale intéressante. Comme vous l'aurez constaté, je n'aime pas l'analyse numérique.
Mes deux développements sont le théorème de projection sur un convexe fermé, et l'inégalité isopérimétrique.
-
Références :
-
Analyse
, Gourdon
-
Objectif Agrégation, Beck, Malick, Peyré
-
Petit guide de calcul différentiel
, Rouvière
-
Elements d'analyse fonctionnelle
, Hirsch
-
Algèbre
, Gourdon
-
Fourier Analysis, Stein, Shakarchi
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
213 : Espaces de Hilbert. Exemples d'applications.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
201 : Espaces de fonctions. Exemples et applications.
209 : Approximation d'une fonction par des fonctions régulières. Exemples d'applications.
205 : Espaces complets. Exemples et applications.
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Analyse
, Gourdon
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Elements d'analyse fonctionnelle
, Hirsch
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Calcul Intégral
, Faraut
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Exemples d'applications.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
-
Références :
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Elements d'analyse fonctionnelle
, Hirsch
-
Thèmes pour l'agrégation de mathématiques - Eléments de cours, développements et exercices corrigés, Houkari
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Probabilités, Barbe-Ledoux
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.
Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.
Bon courage pour votre préparation !
TL1 = Tout-en-un pour la licence 1
-
Références :
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Petit guide de calcul différentiel
, Rouvière
-
Objectif Agrégation, Beck, Malick, Peyré
-
Calcul Intégral
, Faraut
-
Exercices de probabilités, M. Cottrell, V. Genon-Catalot, C.Duhamel et T. Meyre
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Elements d'analyse fonctionnelle
, Hirsch
-
Fichier :
213 : Espaces de Hilbert. Exemples d'applications.
-
Leçon :
-
Références :
-
Fichier :
161 : Espaces vectoriels et espaces affines euclidiens : distances, isométries.
-
Leçon :
-
Remarque :
Pas facile facile cette leçon...
Beaucoup de choses se trouvent dans le livre de Ladegaillerie, mais ce dernier, bien que très riche, est assez difficile à lire surtout quand on est peu à l'aise en géométrie affine comme moi...
Pour le DEV 1, attention au cas d'égalité dans l'inégalité d'Hadamard, qu'il faut faire soigneusement car il est souvent bâclé dans les références que j'ai trouvées.
Bosser un peu les isométries laissant globalement invariant le tétraèdre ou le cube peut être un bon investissement à faire : c'est joli et ça aide à comprendre vraiment l'intérêt des actions de groupe.
Il faut savoir classifier une isométrie vectorielle ou affine en petite dimension à partir d'une matrice (vectorielle) ou d'un système (affine)
Les tableaux en annexe sont un peu nuls, il y en a des mieux faits dans le Garnier ou le Combes que j'ai mis dans ma version de la leçon 191.
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est l'une de mes préférées ! On peut parler de beaucoup de choses comme toutes celles suggérées dans le rapport du jury.
Il faut faire attention au fait que c'est une leçon sur les ESPACES de fonctions, pas sur les fonctions. Il faut donc éviter de mettre trop de choses en rapport avec les propriétés des fonctions, et rester sur les propriétés des espaces !
J'ai choisi de parler des polynômes orthogonaux car je le fais en DEV dans d'autres leçons. Pour ce qui est de la partie IV, ce n'est pas vraiment pas obligatoire, c'est juste que j'avais vu ça en M1 et que j'avais bien aimé, mais je connaissais seulement les idées des démonstrations.
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Remarque :
J'aime beaucoup la compacité, donc je me suis un peu éclaté en mettant des opérateurs compacts, le théorème de Montel et ses conséquences... On n'est évidemment pas obligé de mettre tout ça. Maintenant, comme c'est une leçon sur L'UTILISATION de la notion de compacité... Je pense qu'il faut en mettre un peu quand même !
Par exemple Ascoli me semble incontournable ! Et si on met Ascoli... On peut bien mettre un peu d'opérateurs compacts ! Sachant qu'ici je n'ai mis que les choses de base sur ces objets, je ne suis pas allé vers la théorie spectrale.
Attention avec la dimension finie à ne pas faire "le serpent qui se mord la queue"... Il faut d'abord montrer que les normes sont équivalentes en utilisant la compacité de la sphère qui se justifie par Bolzano-Weierestrass (et extraction diagonale) ! Puis on montre le théorème de Riesz...
Si cela fait longtemps qu'on n'a pas trop manipulé de compacité, il convient de refaire quelques exercices car les arguments de compacité peuvent être parfois un peu futés...
Une chose qu'il faut bien savoir justifier : Si $E$ est un espace vectoriel de dimension finie et $F$ un sous-espace vectoriel fermé de $E$, la distance de tout élément de $E$ à $F$ est atteinte !
-
Références :
-
Fichier :
206 : Exemples d'utilisation de la notion de dimension finie en analyse.
-
Leçon :
-
Remarque :
C'est une leçon qui n'est pas très facile à faire, je conseillerais de la faire plutôt vers la fin de l'année pour avoir du recul sur plusieurs choses.
Il faut évidemment parler des résultats topologiques (normes équivalentes et toutes les conséquences) et après on a le choix entre plein de choses. Les opérateurs compacts ne sont pas obligatoires évidemment mais la dimension finie donne un beau résultat de théorie spectrale sur ces opérateurs.
J'ai peut-être un peu trop forcé sur les résultats hilbertiens parce qu'ils ne sont pas vraiment propres à la dimension finie mais aux Hilbert en général... Le fait de placer ça ici peut être motivé par plusieurs choses : en 2e année quand on n'a pas encore les Hilbert, on présente ces résultats dans le cadre euclidien et on a la projection, la décomposition de l'espace en somme d'un sous-espace et de son orthogonal, et surtout la dimension finie rend le calcul de l'adjoint trivial : il suffit de prendre la transposée de la matrice ! Alors qu'en général, l'adjoint d'un opérateur n'est pas facile à déterminer...
On peut développer plus la partie interpolation et polynôme de meilleure approximation mais n'étant pas ultra à l'aise là dessus je me suis contenté de cela.
Après la partie calcul diff me semble indispensable... Et les équa diff c'est si on veut...
-
Références :
-
Fichier :
209 : Approximation d'une fonction par des fonctions régulières. Exemples d'applications.
-
Leçon :
-
Remarque :
/!\ Après coup, j'ai modifié la partie I-2) pour ne parler que de Stone-Weierstrass : voir la partie consacrée à ce sujet dans le Hirsch-Lacombe. En DEV 1, je traite donc le théorème de Stone-Weierstrass et non pas Bernstein et Weierstrass. Cela m'a permis de ne pas utiliser le Zuily-Queffelec pour cette leçon (je n'aime pas du tout ce livre).
Sinon voilà, je pense que tout y est à peu près : formules de Taylor, résultats de densité, convolution, approximation de l'unité, séries de Fourier... On peut sûrement penser à d'autres choses.
Il faut savoir motiver l'intérêt d'approcher une fonction par des fonctions régulières : en fonction de comment on fait une telle approximation, on va pouvoir prolonger des propriétés propres à des fonctions "lisses" à des fonctions plus "sauvages" comme des fonctions $L^p$ par exemple.
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Exemples d'applications.
-
Leçon :
-
Remarque :
J'adore cette leçon et je suis tombé dessus en oral blanc en décembre en faisant exactement ce plan là.
La partie IV n'est vraiment pas obligatoire, c'est juste que j'avais vu ça en M1 et que j'avais bien aimé mais si on en parle, il faut bien le travailler et je ne suis pas sûr que je l'aurais mise le jour J si j'étais tombé dessus.
Il faut savoir justifier qu'une partie est dense dans un Hilbert en montrant que son orthogonal est nul, connaître la différence entre une base algébrique et une base hilbertienne, savoir calculer une distance (ou une borne inf d'une quantité en reconnaissant une distance) à l'aide du projeté...
Si on parle des polynômes orthogonaux, une question méga-classique qui est systématiquement posée, c'est d'en déduire une base hilbertienne de $L^2(\mathbb{R})$ !
Dans le DEV1, je faisais THM15 et PROP16, si on n'a pas le temps de faire PROP16, il faut quand même savoir la démontrer.
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
203 : Utilisation de la notion de compacité.
205 : Espaces complets. Exemples et applications.
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
209 : Approximation d'une fonction par des fonctions régulières. Exemples d'applications.
213 : Espaces de Hilbert. Exemples d'applications.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
/!\ Après coup, j'ai remplacé le DEV1 par le théorème de Stone-Weierstrass ! Voir la partie du Hirsch-Lacombe qui lui est consacré. Pour le justifier dans cette leçon, il faut dire qu'on est conscient qu'on dépasse le cadre réel en se plaçant sur un espace métrique compact, mais que c'est tout de même un théorème qu'on utilise souvent dans le cadre réel et qui permet d'établir des résultats de densité intéressants : densité des polynômes, des polynômes trigonométriques, des fonctions lipschitziennes, des fonctions affines par morceaux...
Cette leçon est "facile" donc je pense qu'il faut s'attendre à des questions assez poussées du jury : étude de fonctions spéciales, et surtout exemples et contre-exemples (fonction continue nulle part dérivable, fonction discontinue partout sauf en un point, fonction dérivable de dérivée non continue...) Le Hauchecorne fait assez bien ce travail.
-
Références :
-
Fichier :
235 : Problèmes d'interversion de symboles en analyse.
253 : Utilisation de la notion de convexité en analyse.
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Cette leçon est un quasi copier-coller de ma leçon 229, en remplaçant juste le I. En vrai, je pense que ça passe, il faut juste bien motiver tout ça dans les 6 minutes : comme je l'ai dit pour la 229, la convexité est utile pour établir des inégalités intéressantes et étendre des résultats locaux au global (par exemple sur l'optimisation).
La partie convexité en analyse complexe est un peu bof... On peut la virer je pense, mais ça donne au moins une application en plus...
Je suis resté très basique car je trouve la convexité difficile, mais le rapport du jury propose plein de pistes d'approfondissement.
Pour Galton-Watson, il faut bien justifier en quoi la convexité intervient dans les démonstrations. J'ai pris ce développement dans le livre de Delmas, Modèles aléatoires, que je ne trouve pas sur le site.
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Un plan sur lequel je suis tombé pour mon troisième oral blanc. Ce plan est très dur, surtout la partie topologie faible ! Faire de la topologie faible dans des Hilbert est largement suffisant. Il y a également quelques coquilles dans mon plan (notamment sur le théorème de Kakutani qui est une équivalence, sans l'équivalence c'est juste le théorème de Banach-Alaoglu), et j'aurais peut-être dû mettre mon développement sur la courbe brachistochrone dans la partie optimisation en dimension infinie. En tous cas ce plan contient normalement tout ce qu'il faut, j'espère que ça vous sera utile.
-
Références :
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Analyse fonctionelle
, Brézis
-
Analyse matricielle
, Rombaldi
-
Oraux X-ENS Analyse 3, Francinou, Gianella, Nicolas
-
Objectif Agrégation, Beck, Malick, Peyré
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse mathématique
, Testard
-
Fichier :