Utilisés dans les 12 versions de développements suivants :
Théorème de Stone-Weierstrass
-
Développement :
-
Remarque :
Mis à jour le 29.05.17
-
Référence :
-
Fichier :
Théorème de Lax-Milgram et une application
-
Développement :
-
Références :
-
Fichier :
Étude d'une norme dans un Hilbert
Projection sur un convexe fermé
Théorème de Stone-Weierstrass
-
Développement :
-
Référence :
-
Fichier :
Projection sur un convexe fermé
Théorème de Stone-Weierstrass
Projection sur un convexe fermé
-
Développement :
-
Références :
-
Fichier :
Théorème de Stone-Weierstrass
-
Développement :
-
Référence :
-
Fichier :
Projection sur un convexe fermé
-
Développement :
-
Remarque :
Recasages: 213, 219, 253
Page 91
J'y ai mis les preuves de la projection, la caractérisation par l'angle obtus, la caractérisation dans le cas d'un sev, la décomposition en somme orthogonale et Riesz (c'est trop long pour faire un dév, il faut sélectionner les preuves qu'on veut présenter).
Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
-
Référence :
-
Fichier :
Théorème de Stone-Weierstrass
-
Développement :
-
Remarque :
Recasages: 201, 203, 209
Page 29
Commentaires en fin de document.
Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
-
Référence :
-
Fichier :
Théorème de Stone-Weierstrass
-
Développement :
-
Référence :
-
Fichier :
Utilisés dans les 48 versions de leçons suivantes :
201 : Espaces de fonctions ; exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 12.05.17
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 11.05.17
-
Références :
-
Analyse fonctionnelle - Théorie et applications, Brezis, Haim
-
Analyse numérique et équation différentielle
, Demailly
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Topologie
, Queffelec
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Topologie. Espaces fonctionnels
, Tisseron
-
Cours de mathématiques MP-MP*, Voedts, Jean
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 17.05.17
-
Références :
-
Fichier :
202 : Exemples de parties denses et applications.
-
Leçon :
-
Remarque :
Mis à jour le 19.05.17
-
Références :
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse fonctionnelle - Théorie et applications, Brezis, Haim
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Algèbre
, Gourdon
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Cours d'analyse
, Pommelet
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse réelle et complexe
, Rudin
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Remarque :
Mis à jour le 29.05.17
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications
-
Leçon :
-
Références :
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Analyse
, Gourdon
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse fonctionelle
, Brézis
-
Théorie des distributions
, Bony
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse numérique et équation différentielle
, Demailly
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse numérique et équation différentielle
, Demailly
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Objectif Agrégation, Beck, Malick, Peyré
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Références :
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Analyse numérique et équation différentielle
, Demailly
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse
, Gourdon
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Analyse fonctionelle
, Brézis
-
Cours d'analyse
, Pommelet
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Elements d'analyse fonctionnelle
, Hirsch
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Analyse
, Gourdon
-
Analyse fonctionnelle - Théorie et applications, Brezis, Haim
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Fichier :
228 : Continuité, dérivabilité, dérivation faible des fonctions réelles d’une variable réelle. Exemples et applications.
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Calcul intégral, Candelpergher
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications
-
Leçon :
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications
228 : Continuité, dérivabilité, dérivation faible des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
234 : Fonctions et espaces de fonctions Lebesgue-intégrables.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Analyse fonctionelle
, Brézis
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Oraux X-ENS Analyse 3, Francinou, Gianella, Nicolas
-
Elements d'analyse fonctionnelle
, Hirsch
-
Cours d'analyse
, Pommelet
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse fonctionnelle - Théorie et applications, Brezis, Haim
-
Analyse complexe pour la Licence 3, Tauvel
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
235 : Problèmes d’interversion en analyse.
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
206 : Exemples d’utilisation de la notion de dimension finie en analyse
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Remarque :
Plan réalisé durant un oral blanc de fin d'année (j'avais préparé la leçon durant l'année, quand même). On peut aller bien plus loin, mais l'exemple 37 est déjà une porte ouverte à bien trop de questions d'analyse spectrale… (cf. plan de EWna)
L'application 30 est un exemple en lien avec un de mes devs pour une autre leçon, il est assez drôle de recaser ainsi du savoir, pour de potentielles questions à l'oral, surtout pour une leçon d'exemples comme celle-ci.
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Ébauche de plan, que je publie car je trouvais la structure globale intéressante. Comme vous l'aurez constaté, je n'aime pas l'analyse numérique.
Mes deux développements sont le théorème de projection sur un convexe fermé, et l'inégalité isopérimétrique.
-
Références :
-
Analyse
, Gourdon
-
Objectif Agrégation, Beck, Malick, Peyré
-
Petit guide de calcul différentiel
, Rouvière
-
Elements d'analyse fonctionnelle
, Hirsch
-
Algèbre
, Gourdon
-
Fourier Analysis, Stein, Shakarchi
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.