Développement : Opérateurs de Hilbert-Schmidt, étude et complétude

Détails/Enoncé :

Ce développement peut amener à avoir des questions sur les opérateurs compacts il faut donc les connaître et savoir démontrer que l'ensemble des opérateurs compacts est fermé dans L(E).
Il faut également donner des exemples de tels opérateurs (multiplication par une suite de carré sommable dans l$^2$(N), opérateurs de rang finis) et des exemples d'opérateurs n'étant pas dans cet ensemble (Id, Shift)

Versions :

  • Auteur :
  • Remarque :
    Recasages: 213 pleinement, 205 dans une moindre mesure mais tout à fait acceptable, 208 moins acceptable

    Lacombe Massat (Analyse fonctionnelle) p114+122

    Au programme:
    - $T \in \mathcal{HS}(\mathcal{H}) \Longleftrightarrow T^* \in \mathcal{HS}(\mathcal{H})$ et la valeur de $\sum\limits_{n =0}^{+\infty} \|T e_n\|^2$ ne dépend pas du choix de la base hilbertienne $(e_n)_{n \in \mathbb{N}}$,
    - $(\mathcal{HS}(\mathcal{H}), \langle \cdot | \cdot \rangle_2)$ est un espace de Hilbert,
    - L'ensemble des opérateurs de rang fini est dense dans $\mathcal{HS}(\mathcal{H})$.
    - $\displaystyle{T \in \mathcal{HS}(\mathcal{H}) \Longleftrightarrow \exists K \in L^2(\Omega \times \Omega, \mu \otimes \mu): T = \left [ T_K : f \mapsto \int_\Omega K(x, \cdot) f ~\mathrm{d}\mu \right ]}$

    Commentaires à la fin du document, voir mon retour d'oral.


    Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
  • Référence :
  • Fichier :
  • Auteur :
  • Remarque :
    Un développement qui utilise toute l'artillerie des espaces de Hilbert, qui utilise un nombre incalculable de fois l'égalité de Bessel et qui fera des merveilles dans les leçons 205, 208 et 213 ! Il y a de la matière dans ce développement, alors démontrez ce que vous maîtrisez le mieux ! Comme dit au début de ce développement, n'oubliez pas de donner des exemples d'opérateurs de Hilbert-Schmidt et d'opérateurs qui sont continus, mais pas de Hilbert-Schmidt, voire des exemples d'opérateurs compacts qui ne sont pas de Hilbert-Schmidt ! Un exemple est le suivant : si $(a_n)_{n \in \mathbb{N}} \in c_0(\mathbb{N}) \setminus \ell^2(\mathbb{N})$, alors l'opérateur :
    \[
    T : (u_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}) \longmapsto (a_nu_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})
    \]
    est compact, mais pas de Hilbert-Schmidt !
  • Références :
  • Fichier :

Références utilisées dans les versions de ce développement :

Analyse fonctionnelle, Gilles Lacombes, Pascal Massat (utilisée dans 5 versions au total)
Elements d'analyse fonctionnelle , Hirsch (utilisée dans 62 versions au total)