Analyse réelle et complexe

Rudin

Utilisés dans les 21 versions de développements suivants :

  • Développement :
  • Remarque :
    La preuve du théorème de Montel (à la Rudin) est belle mais trop courte pour constituer à elle seule un développement; j'ai rajouté la construction d'une suite exhaustive de compacts (cf. le Queffélec-Queffélec pour ça). On pourrait aussi rajouter le théorème d'Ascoli mais là on manquerait peut-être de temps au contraire. On peut aussi faire la preuve du théorème de Montel dans le Queffélec-Queffélec, mais je l'aime moins que celle du Rudin personnellement, c'est une question de goût.
  • Références :
  • Développement :
  • Remarque :
    D'après moi pour les leçons : 201, 207, 208, 234, 235 et 250.

    Attention il est très long, et il y a un travail préliminaire à faire sur l'approximation de l'unité choisie par W. Rudin que l'on n'a bien évidemment pas le temps de démontrer : bien préciser que c'est admis.

    Attention également à la coquille dans le livre : $\Phi_A$ et $\Psi_A$ sont à intervertir.

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Référence :
  • Fichier :
  • Développement :
  • Remarque :
    D'après moi pour les leçons : 205 et 234.

    Version où l'on traite les cas p fini et infini.
    La démonstration est tirée du livre de W. Rudin, pour qui le cas p infini est quasi trivial, je ne partage pas trop son point de vue...

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Référence :
  • Fichier :

Utilisés dans les 25 versions de leçons suivantes :