Énoncé : Soit $\Omega \subset \mathbb{C}$ un ouvert et $\mathcal{A}$ une partie de l'espace vectoriel $\mathcal{H}(\Omega)$ des fonctions holomorphes sur $\Omega$, muni de la topologie de la convergence uniforme sur tout compact de $\Omega$. Alors les propriétés suivantes sont équivalentes :
-- Pour tout $K\subset \Omega$ compact, il existe une constante $M_K \in \mathbb{C}_+^*$ telle que, pour tout $f \in \mathcal{A}$, $\|f\|_{\infty, K}\leq M_K$.
-- La partie $\mathcal{A}$ est relativement compacte.
Application : Il n'existe pas de norme sur l'espace vectoriel $\mathcal{H}(\Omega)$ qui définisse la même topologie que la topologie de la convergence uniforme sur tout compact de $\Omega$.
Référence : Analyse pour l'agrégation de mathématiques, 40 développements, J. et L. Bernis, Ellipses
La preuve du théorème de Montel (à la Rudin) est belle mais trop courte pour constituer à elle seule un développement; j'ai rajouté la construction d'une suite exhaustive de compacts (cf. le Queffélec-Queffélec pour ça). On pourrait aussi rajouter le théorème d'Ascoli mais là on manquerait peut-être de temps au contraire. On peut aussi faire la preuve du théorème de Montel dans le Queffélec-Queffélec, mais je l'aime moins que celle du Rudin personnellement, c'est une question de goût.
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.