Leçon 201 : Espaces de fonctions. Exemples et applications.

(2021) 201
(2023) 201

Dernier rapport du Jury :

(2022 : 201 - Espaces de fonctions. Exemples et applications.) Sans sortir du programme, le candidat dispose d'au moins deux thèmes très riches pour nourrir son plan : espaces de fonctions continues sur un compact, espaces $L^p$ sur le cercle ou sur la droite réelle. Sur le premier sujet, le jury attend des candidats une bonne familiarité avec la convergence uniforme et son utilisation pour justifier des régularités. Le théorème de Stone-Weierstrass est évidemment incontournable, dans ses différentes versions, constructives ou non. La complétude peut également être exploitée, par exemple en lien avec les équations différentielles ou intégrales. Sur le second, la convolution et ses applications, ainsi que l'analyse de Fourier fournissent un large terrain d'exploration. Plusieurs prolongements s'offrent aux candidats solides : théorème de Baire et ses innombrables applications, espaces de fonctions holomorphes (théorème de Montel et ses applications, espaces de Hardy, etc.), espaces de fonctions régulières (fonctions lipschitziennes, $C^k$, classe de Schwartz), algèbres de Banach de fonctions (algèbre de convolution $L^1(R)$, algèbre du disque, algèbre de Wiener des séries de Fourier absolument convergentes, etc.), étude des parties compactes de $C(K)$ (K compact) voire de $L^p$.

(2019 : 201 - Espaces de fonctions. Exemples et applications.) C’est une leçon riche où le candidat doit choisir soigneusement le niveau auquel il souhaite se placer et bien délimiter le champ qu’il se propose d’explorer. Le jury attend que les candidats aient réfléchi à leur choix et les illustrent avec des applications et exemples, ce qui parfois peut manquer dans la présentation. $\\$ Les candidats peuvent se concentrer dans un premier temps sur les espaces normés composés de fonctions continues sur $\textbf{R}$ ou une partie compacte de $\textbf{R}$ et les propriétés de l’espace selon la norme dont il est muni. La norme $\|.\|_{\infty}$ est naturellement associée à la convergence uniforme dont il faut avoir assimilé les bases (en particulier, le jury attend une maîtrise du fait qu’une limite uniforme de fonctions continues est continue). On peut aussi envisager les variantes faisant intervenir une ou plusieurs dérivées. $\\$ Les espaces de Hilbert de fonctions comme l’espace des fonctions $L^2$ constituent ensuite une ouverture déjà significative. Pour aller plus loin, d’autres espaces de Banach usuels tels que les espaces $L^p$ ont tout à fait leur place dans cette leçon, ainsi que les espaces de Sobolev, certains espaces de fonctions holomorphes (Hardy, Bergman), ou dans une autre direction, la structure de l’espace de Schwartz $S(\textbf{Z})$ ou de l’espace des fonctions $C^{\infty}$ à support compact sur $\textbf{R}$ peuvent offrir des ouvertures de très bon niveau. $\\$ Il est tout à fait bienvenu, et nombre de candidats ne s’en privent pas, de discuter les relations entre ces espaces, notamment de densité et de présenter des applications de ces propriétés.
(2017 : 201 - Espaces de fonctions ; exemples et applications.) C’est une leçon riche où le candidat devra choisir soigneusement le niveau auquel il souhaite se placer. Les espaces de fonctions continues sur un compact (par exemple l’intervalle $[0,1]$) offrent des exemples élémentaires et pertinents. Les candidats peuvent se concentrer dans un premier temps sur les espaces de fonctions continues et les bases de la convergence uniforme. Dans ce domaine, le jury attend une maîtrise du fait qu’une limite uniforme de fonctions continues est continue. Les espaces de Hilbert de fonctions comme l’espace des fonctions $L^2$ constituent ensuite une ouverture déjà significative. Pour aller plus loin, d’autres espaces usuels tels que les espaces $L^p$ ont tout à fait leur place dans cette leçon. Le théorème de Riesz-Fischer est alors un très bon développement pour autant que ses difficultés soient maîtrisées. Les espaces de fonctions holomorphes sur un ouvert de C constituent aussi une ouverture de très bon niveau ou, dans une autre direction, l’espace de Sobolev $H^1$.
(2016 : 201 - Espaces de fonctions : exemples et applications.) C’est une leçon riche où le candidat devra choisir soigneusement le niveau auquel il souhaite se placer. Les espaces de fonctions continues sur un compact (par exemple l’intervalle $[0,1]$) offrent des exemples élémentaires et pertinents. Dans ce domaine, le jury attend une maîtrise du fait qu’une limite uniforme de fonctions continues est continue. Les candidats peuvent se concentrer dans un premier temps sur les espaces de fonctions continues et les bases de la convergence uniforme. Les espaces de Hilbert de fonctions comme l’espace des fonctions $L^2$ constituent ensuite une ouverture déjà significative. Pour aller plus loin, d’autres espaces usuels tels que les espaces $L^p$ ont tout à fait leur place dans cette leçon. Le théorème de Riesz-Fischer est alors un très bon développement pour autant que ses difficultés soient maîtrisées. Les espaces de fonctions holomorphes sur un ouvert de C constituent aussi une ouverture de très bon niveau.

Développements :

Plans/remarques :

2022 : Leçon 201 - Espaces de fonctions. Exemples et applications.


2020 : Leçon 201 - Espaces de fonctions. Exemples et applications

  • Auteur :
  • Remarque :
    Toutes les références sont à la fin du plan.

    Mes excuses pour l'écriture, et attention aux coquilles...
  • Fichier :

2019 : Leçon 201 - Espaces de fonctions. Exemples et applications.


2018 : Leçon 201 - Espaces de fonctions. Exemples et applications.


2017 : Leçon 201 - Espaces de fonctions ; exemples et applications.


2016 : Leçon 201 - Espaces de fonctions : exemples et applications.


Retours d'oraux :

2018 : Leçon 201 - Espaces de fonctions. Exemples et applications.

  • Leçon choisie :

    201 : Espaces de fonctions. Exemples et applications.

  • Autre leçon :

    226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples. Applications à la résolution approchée d’équations.

  • Développement choisi : (par le jury)

    Théorème de Weierstrass (par les probabilités)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Question sur le développement : "Comment expliquer le théorème de transfert à des lycéens?" "Quel est la limite d'une suite de polynômes?"
    Question sur le plan : théorème de convergence monotone "pas bon" (confusion entre intégrable vs mesurable , cf Marco) et donc ils m'ont aidé à construire un contre-exemple
    Question : Est-ce que L1 muni de la norme infini est complet ? pourquoi ?

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Nous aide à répondre aux questions, pousse à répondre et ne pas abandonner.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Non, j'ai été déstabilisé. Je suis sortie de l'oral assez déçue, notamment à cause du tirage (j'avais eu Suite récurrente l'année précédente)

  • Note obtenue :

    10.75


Références utilisées dans les versions de cette leçon :

Topologie générale et espaces normés , Hage Hassan (utilisée dans 42 versions au total)
Analyse , Gourdon (utilisée dans 554 versions au total)
Cours d'analyse fonctionnelle, Daniel Li (utilisée dans 53 versions au total)
Analyse. Théorie de l'intégration, Briane, Pagès (utilisée dans 104 versions au total)
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte (utilisée dans 133 versions au total)
Analyse complexe pour la Licence 3, Tauvel (utilisée dans 101 versions au total)
Théorie des distributions , Bony (utilisée dans 8 versions au total)
Analyse fonctionelle , Brézis (utilisée dans 35 versions au total)
Elements d'analyse fonctionnelle , Hirsch (utilisée dans 100 versions au total)
Analyse réelle et complexe , Rudin (utilisée dans 70 versions au total)
Analyse pour l'agrégation, Queffelec, Zuily (utilisée dans 211 versions au total)
Suites et séries numériques, suites et séries de fonctions, El Amrani (utilisée dans 85 versions au total)
Analyse numérique et équation différentielle , Demailly (utilisée dans 73 versions au total)
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire (utilisée dans 34 versions au total)
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis (utilisée dans 149 versions au total)
Calcul Intégral , Faraut (utilisée dans 33 versions au total)
Cours d'analyse , Pommelet (utilisée dans 47 versions au total)
De l'intégration aux probabilités, Garet, Kurtzman (utilisée dans 61 versions au total)
Objectif Agrégation, Beck, Malick, Peyré (utilisée dans 274 versions au total)
Analyse fonctionnelle - Théorie et applications, Brezis, Haim (utilisée dans 29 versions au total)