Développement : Théorème de Fourier-Plancherel

Détails/Enoncé :

Soit $f \in L^1 \bigcap L^2$. Alors $|| \widehat{f} ||_2 = ||f||_2$ et $\mathcal{F} (L^1 \bigcap L^2) \subseteq L^2$ et de plus cette partie est dense.

Autres années :

Versions :

  • Auteur :
  • Remarque :
    Attention, bien prendre la convention du Rudin pour la transformée de Fourier.
    En bas à gauche de la première page, la justification de la convergence est le théorème de convergence dominée !
  • Référence :
  • Fichier :