(2019 : 250 - Transformation de Fourier. Applications.)
Cette leçon offre de multiples facettes. Les candidats peuvent adopter différents points de vue : $L^1$, $L^2$ et/ou distributions. L’aspect « séries de Fourier» n’est toutefois pas dans l’esprit de cette leçon ; il ne s’agit pas de faire de l’analyse de Fourier sur n’importe quel groupe localement compact mais sur $\textbf{R}$ ou $\textbf{R}^d$. $\\$ La leçon nécessite une bonne maîtrise de questions de base telles que la définition du produit de convolution de deux fonctions de $L^1$. On ne doit pas se limiter à une analyse algébrique de la transformation de Fourier. C’est bien une leçon d’analyse, qui nécessite une étude soigneuse des hypothèses, des définitions et de la nature des objets manipulés. Le lien entre la régularité de la fonction et la décroissance de sa transformée de Fourier doit être fait, même sous des hypothèses qui ne sont pas minimales. Les candidats doivent savoir démontrer le lemme de Riemann-Lebesgue pour une fonction intégrable. $\\$ La formule d’inversion de Fourier pour une fonction $L^1$ dont la transformée de Fourier est aussi $L^1$ est attendue ainsi que l’extension de la transformée de Fourier à l’espace $L^2$ par Fourier-Plancherel. Des exemples explicites de calculs de transformations de Fourier classiques comme la gaussienne ou $(1+x^2)^{-1}$ paraissent nécessaires. $\\$ Pour aller plus loin, la transformation de Fourier des distributions tempérées ainsi que la convolution dans le cadre des distributions tempérées peuvent être abordées. Les attentes du jury sur ces questions restent modestes, au niveau de ce qu’un cours de première année de master sur le sujet peut contenir. Le fait que la transformée de Fourier envoie $S(\textbf{R}^d)$ dans lui même avec de bonnes estimations des semi-normes doit alors être compris et la formule d’inversion de Fourier maîtrisée dans ce cadre. Des exemples de calcul de transformée de Fourier peuvent être donnés dans des contextes liés à la théorie des distributions comme par exemple la transformée de Fourier de la valeur principale de $\frac{1}{x}$. Dans un autre registre, il est aussi possible d’orienter la leçon vers l’étude de propriétés des fonctions caractéristiques de variables aléatoires. $\\$ La résolution de certaines équations aux dérivées partielles telles que, par exemple, l’équation de la chaleur sur $\textbf{R}$, peut être abordée, avec une discussion sur les propriétés qualitatives des solutions.
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
Pas de réponse fournie.
Défense de plan : rien de spécial. Au début de mes 6 minutes j'ai écris au tableau : "dérivation <-> multiplication ; convolution <-> multiplication", en expliquant que la TF permet de transformer un problème de dérivation en problème de multiplication via la convolution, ce qui justifie son étude et motive la volonté de reconstruire f à partir de hat{f}. Ils ont apprécié (je crois).
Contenu du plan : relativement classique, j'ai fait L1, Schwartz, L2, puis une partie "résolution d'EDP" contenant des résolutions explicites (type chaleur par exemple) et la méthode des différences finies (option B, attention c'est une TF discrète donc içi).
Développement : Je suis allé trop vite donc j'ai brodé autour et j'ai au final fais 14 minutes. Ils ne m'en n'ont pas tenu rigueur. Je me contentais du cas simple (avec x^2) et 1D. J'ai tout de même expliqué comment passer au cas général comment généraliser en multi-D.
Question sur le développement :
- détailler la formule intégrale de Taylor.
- question sur la détermination principale de la racine carrée, que se
passe-t-il si on en prend une autre. même question pour la TF de la
gaussienne. (il y a un changement de phase).
- Que se passe-t-il si on suppose a intégrable et non C infini (notations du QueZui). (tout se passe bien par densité).
Question sur le plan :
- Comment calculer la TF de la gaussienne.
- Définition de la décroissance rapide.
- Preuve de si f et ˆf sont simultanément à support compact, alors f = 0.
- Détail sur la convolution et les probabilités.
- Pourquoi la TF est injective.
- Détail sur l'application du développement à la fonction d'Airy.
Exercices :
- Trouver les $f \in \L^1$ telles que $f \star f = f$.
- Soit $A >0$. On pose $E = \{ f \in L^\infty \cap L^1 \cap \mathcal{C}^\infty, \quad \mathrm{Supp} (\hat{f}) \subset B(0,A) \}$. Montrer que la dérivation de $E$ dans $E$ définit une opération continue.
- Pour finir : calcul de $\chi_{[-1,1]} \star \chi_{[-1,1]}$.
Jury très agréable, ils m'ont directement mis à l'aise. Ils semblaient en revanche totalement désintéressé lors du développement. Ils se partageaient bien la parole.
Pas de réponse fournie.
18.75
Pas de réponse fournie.
Pas de réponse fournie.
Pas de réponse fournie.
Comme dit par d'autres il faut être 100% au taquet sur ce qu'on met dans son plan car le jury pose des questions sur tout. Après être revenus sur des imprécisions de mon développement, ils m'ont demandé les grandes lignes de la démo que j'aurais faite pour mon 2ème développement. Pourquoi les gaussiennes sont des vecteurs propres pour la transf de Fourier. Un peu de Shannon car j'en avais parlé dans mon plan
NB : 4 membres du jury pour la leçon agrég spécial docteurs
Très sympathique et aidant. 3 sur les 4 posaient pas mal de questions et donnaient des pistes si je bloquais
Il faut être bien à l'heure de la convocation car la prép commence environ 3h20 avant le passage, on a donc eu réellement les 3h de préparation contrairement à ce qui s'était peut-être passé d'autres années. Bien connaître les livres qu'on utilise car en soi chercher dans la biblio de l'agrég ne sert à rien si on ne sait pas quel livre va nous fournir l'info (j'avais un trou sur un morceau de démonstration et sans le livre que je voulais c'était compliqué de retrouver dans un autre. Malgré tout j'ai eu le temps de bien écrire mon plan et revoir les principales démos durant la préparation, puis penser à mon intro et me concentrer pendant qu'ils font les photocopies. Au total j'ai apprécié l'expérience
12.25
241 : Suites et séries de fonctions. Exemples et contre-exemples.
Pas de réponse fournie.
Pas de réponse fournie.
Un échange (très) détaillé sera disponible sur mon site internet : www.coquillagesetpoincare.fr
Une petite erreur qui aurait pu être évité sur le développement ... Mais surtout deux gros points négatifs sur l’espace de Schwartz et la convolution. De plus il est écrit dans le rapport du jury :La leçon nécessite une bonne maîtrise de questions de base telle que la définition du produit de convolution de deux fonctions de L1. Quelques petites erreurs d’étourderies car je voulais répondre vite ... mais je me corrigeais rapidement.J’ai trouvé le jury plutôt "fermé" et pas vraiment sympathique, et dont un qui était très rabaissant ... On n’est pas là pour se faire des amis, mais quand même ...
Oui
14.25
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
Pas de réponse fournie.
Pas de réponse fournie.
Beaucoup de questions sur la théorie de la mesure suite à mon développement et de justifications concernant l'appartenance de certaine fonctions à certains espaces.
On m'a demandé d'énoncé le théorème de Fubini.
Puis le probabiliste du jury s'est réveillé pour me poser des questions concernant les transformées de Fourier des lois de probabilités, puis il s'est rendormi.
On m'a aussi demander si je pouvais donner une méthode de calcul pour la transformée de la fonction x--> (1+x^4)^{-1}. J'ai énoncé la méthode des résidus, mais ils ne m'ont pas demandé de faire le calcul par manque de temps.
Le jury a été plutôt sympathique avec moi venant (trop ?) souvent à mon aide.
Surpris d'avoir un spectateur à cet oral, je ne m'y attendais pas. Aussi surpris d'avoir réussi à apprendre un développement en peu de temps et avoir pu le restituer (plus ou moins bien) lors de l'épreuve. (Heureusement que je connaissais mon deuxième développement sur le bout des doigts.)
Pas de réponse fournie.