Utilisée dans les 14 versions de développements suivants :
Racine carrée d'un opérateur hermitien positif dans un espace de Hilbert
Etude de l'espace L1 dont la transformée de Fourier est L1
Projection sur un convexe fermé
-
Développement :
-
Référence :
-
Fichier :
Théorème de Lévy et TCL
-
Développement :
-
Remarque :
Mon document est très long mais c'est parce que je donne beaucoup de détails, des conseils et je démontre des résultats utilisés dans la démonstration à la fin.
Dans cette version, je ne parachute pas la fonction qui permet de montrer qu'il suffit de tester la convergence sur les fonctions continues qui tendent vers 0 à l'infini, mais j'essaie de motiver sa construction pour que vous arriviez mieux à retenir le développement.
On démontre aussi le TCL en utilisant le logarithme complexe.
Je ne suis pas vraiment d'accord avec les recasages, pour moi il y en a plus. J'ai mis mes recasages au début du document.
Pour la référence, le titre du Queffelec/Zuily que j'ai utilisé est "agrégation de mathématiques, éléments d'analyse".
-
Références :
-
Fichier :
Equivalence des normes en dimension finie et théorème de Riesz
Une base de L2(0, 1) : les polynômes trigonométriques
Fermés de L2(R) invariants par translation
-
Développement :
-
Remarque :
*Mes développements n’ont pas été pensés pour être partagés au départ, vous excuserez mon écriture et mes notations un peu brouillonnes. Soyez vigilants sur les coquilles/erreurs possibles et critiques sur ce que vous lisez. N’hésitez pas à me contacter pour des clarifications.
*La plupart de mes dévs contiennent un plan et un rappel des énoncés, pour être au clair sur ce qu’on a à disposition et ce qu’on veut faire.
*Les recasages inscrits sur le document sont les numéros de 2023/2024.
-
Référence :
-
Fichier :
Théorème de Banach-Steinhaus et série de Fourier divergente
Propriétés des opérateurs compacts
-
Développement :
-
Remarque :
Ce développement est assez difficile. Dans mon document, je détaille un certain nombre de propriétés sur le spectre des opérateurs compacts. Pour en faire un développement il faut en choisir quelque une et les démontrés. Cela demande de se tester sur 15min. Pour savoir quoi montrer en 15 min je conseille de regarder la version de Malartre.
Le lien vers mon document:
https://perso.eleves.ens-rennes.fr/people/thomas.courant/Agr%C3%A9gation.html
-
Références :
-
Fichier :
Théorème de Riesz-Fischer (a.k.a. Lp est complet)
-
Développement :
-
Remarque :
Mes documents sont longs, déjà parce que je parle vite (donc il faut beaucoup de contenus), que j'écris gros, et que j'aime bien comprendre dans les détails, mais aussi et surtout parce qu'il y a beaucoup de remarques/infos à la fin, pour essayer d'être capable de répondre au max de questions liées au dev !
Evidemment, il est fort possible qu'il y ait des coquilles de ci de là, n'hésitez pas à me les signaler !
(Bon courage !)
-
Références :
-
Fichier :
Projection sur un convexe fermé
-
Développement :
-
Remarque :
Pour les leçons : 205, 208, 213, 219, 253.
-
Référence :
-
Fichier :
Spectre d'un opérateur autoadjoint
Projection sur un convexe fermé
-
Développement :
-
Remarque :
Recasages: 205, 208, 213, 219, 253
Passe nickel en 14 minutes.
-
Référence :
-
Fichier :
Théorème de Riesz-Fischer (a.k.a. Lp est complet)
-
Développement :
-
Remarque :
Recasages: 201, 205, 213, 234, 241
Je le mets dans la 213 car j'aurai essayer d'axer le dév sur l'espace L^2 et montrer que l'on a bien un produit scalaire dessus. Néanmoins il aurait fallu être capable de justifier qe c'est le seul des L^p à être hilbertien (c'est corriger en exo dans le El Amrani).
Je pense que je n'aurai pas fait le cas +infini car je le trouve pas très bien fait dans les bouquins que j'utilisais mais la démonstration est moins compliquée.
Sinon ça passe bien en 15 minutes.
-
Référence :
-
Fichier :
Utilisée dans les 64 versions de leçons suivantes :
202 : Exemples de parties denses et applications.
-
Leçon :
-
Références :
-
Algèbre
, Gourdon
-
Analyse
, Gourdon
-
Analyse pour l'agrégation, Queffelec, Zuily
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Cours d'analyse
, Pommelet
-
Cours d'analyse fonctionnelle, Daniel Li
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Calcul Intégral
, Faraut
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Cours d'analyse fonctionnelle, Daniel Li
-
Analyse
, Gourdon
-
Oraux X-ENS Analyse 4
, Francinou, Gianella, Nicolas
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Has] Topologie générale et espaces normés : Hage Hassan
[GouAn] Analyse : Gourdon
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[Tau] Analyse complexe pour la Licence 3 : Tauvel
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[GouAn] Analyse : Gourdon
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
[Has] Topologie générale et espaces normés : Hage Hassan
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
[Li] Cours d'analyse fonctionnelle : Daniel Li
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Has] Topologie générale et espaces normés : Hage Hassan
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[Li] Cours d'analyse fonctionnelle : Daniel Li
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Elements d'analyse réelle : Rombaldi
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Les] 131 Développements pour l’oral : D. Lesesvre
[OA] Objectif Agrégation : Beck, Malick, Peyré
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Cours d'analyse fonctionnelle, Daniel Li
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
[OA] Objectif Agrégation : Beck, Malick, Peyré
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Calcul Différentiel : El Amrani (pas référencé par agregmaths)
[GouAn] Analyse : Gourdon
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Les] 131 Développements pour l’oral : D. Lesesvre
[Rou] Petit guide de calcul différentiel : Rouvière
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
[Gri] Algèbre linéaire : Grifone
-
Références :
-
Analyse
, Gourdon
-
Cours d'analyse fonctionnelle, Daniel Li
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Algèbre linéaire
, Grifone
-
Fichier :
222 : Exemples d'études d'équations différentielles linéaires et d'équations aux dérivées partielles linéaires.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[Ber] Équations différentielles : Florent Berthelin
[Li] Cours d'analyse fonctionnelle : Daniel Li
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Elements d'analyse réelle : Rombaldi
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Les] 131 Développements pour l’oral : D. Lesesvre
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Cours d'analyse fonctionnelle, Daniel Li
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Fichier :
234 : Fonctions et espaces de fonctions Lebesgue-intégrables.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
[OA] Objectif Agrégation : Beck, Malick, Peyré
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
-
Références :
-
Fichier :
235 : Problèmes d’interversion de limites et d’intégrales.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[OA] Objectif Agrégation : Beck, Malick, Peyré
[Li] Cours d'analyse fonctionnelle : Daniel Li
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Objectif Agrégation, Beck, Malick, Peyré
-
Cours d'analyse fonctionnelle, Daniel Li
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
[OA] Objectif Agrégation : Beck, Malick, Peyré
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Les] 131 Développements pour l’oral : D. Lesesvre
-
Références :
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Objectif Agrégation, Beck, Malick, Peyré
-
Cours d'analyse fonctionnelle, Daniel Li
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Fichier :
250 : Transformation de Fourier. Applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Li] Cours d'analyse fonctionnelle : Daniel Li
[OA] Objectif Agrégation : Beck, Malick, Peyré
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Has] Topologie générale et espaces normés : Hage Hassan
[Les] 131 Développements pour l’oral : D. Lesesvre
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Tau] Analyse complexe pour la Licence 3 : Tauvel
[Rom] Elements d'analyse réelle : Rombaldi
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
[NR] No Reference :(
-
Références :
-
Topologie générale et espaces normés
, Hage Hassan
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Cours d'analyse fonctionnelle, Daniel Li
-
Analyse complexe pour la Licence 3, Tauvel
-
Elements d'analyse réelle
, Rombaldi
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Analyse
, Gourdon
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Objectif Agrégation, Beck, Malick, Peyré
-
Cours d'analyse fonctionnelle, Daniel Li
-
Fichier :
206 : Exemples d’utilisation de la notion de dimension finie en analyse
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
206 : Exemples d’utilisation de la notion de dimension finie en analyse
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
250 : Transformation de Fourier. Applications.
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
206 : Exemples d’utilisation de la notion de dimension finie en analyse
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
234 : Fonctions et espaces de fonctions Lebesgue-intégrables.
-
Leçon :
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Remarque :
J'adore cette leçon et je suis tombé dessus le jour J ! (voir mon témoignage)
Je ne l'ai pas faite tout à fait comme ça le jour J : J'ai raccourci la partie I-2) en enlevant les espaces produits (parce que j'aimais pas trop ça...) Dans la partie II-1), j'ai rajouté des choses sur les espaces vectoriels normés de dimension finie (comme quoi ils sont tous complets parce qu'on a l'équivalence des normes...). Comme exemple d'application du théorème du point fixe, j'ai mis le théorème d'inversion locale (que je faisais en dev) plutôt que Cauchy-Lipschitz. Enfin, j'ai regroupé les parties III-1) et III-2), tout ça pour avoir un peu plus de place pour parler de la théorie de Baire que j'aime bien.
Je vous laisse aller voir mon témoignage, ils m'ont surtout interrogé sur les espaces $L^p$ parce que je suis passé sur Riesz-Fischer en dev. Je pense qu'il faut bien connaître des exemples d'espaces complets, mais aussi d'espaces non complets et savoir justifier pourquoi ils ne le sont pas. La théorie de Baire n'est pas obligatoire (mais me semble quand même être un bon investissement à faire pendant l'année), si on en parle il faut l'avoir vraiment travaillée : les démos (je faisais Banach-Steinhaus en DEV avec un exemple de fonction continue dont la série de Fourier diverge en 0), mais aussi des exemples d'utilisation, faire quelques exercices sur le sujet. Personnellement, j'en ai parlé parce que j'avais vu tout ça en M1.
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Remarque :
Cette leçon a été faite au début de l'année. Je n'ai pas grand chose à dire dessus si ce n'est que comme d'habitude la théorie de Baire n'est pas obligatoire mais elle me semble être un bon investissement à faire pendant l'année. Si on en parle, il faut travailler les démos et voir quelques exemples d'utilisation, faire quelques exercices...
Parler des Hilbert me semble indispensable (sinon la leçon est un peu pauvre...)
Pour les savoir-faire : savoir justifier qu'une application linéaire est continue et surtout justifier qu'elle ne l'est pas au moyen d'une suite (le plus souvent), savoir trouver des normes d'opérateurs...
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Exemples d'applications.
-
Leçon :
-
Remarque :
J'adore cette leçon et je suis tombé dessus en oral blanc en décembre en faisant exactement ce plan là.
La partie IV n'est vraiment pas obligatoire, c'est juste que j'avais vu ça en M1 et que j'avais bien aimé mais si on en parle, il faut bien le travailler et je ne suis pas sûr que je l'aurais mise le jour J si j'étais tombé dessus.
Il faut savoir justifier qu'une partie est dense dans un Hilbert en montrant que son orthogonal est nul, connaître la différence entre une base algébrique et une base hilbertienne, savoir calculer une distance (ou une borne inf d'une quantité en reconnaissant une distance) à l'aide du projeté...
Si on parle des polynômes orthogonaux, une question méga-classique qui est systématiquement posée, c'est d'en déduire une base hilbertienne de $L^2(\mathbb{R})$ !
Dans le DEV1, je faisais THM15 et PROP16, si on n'a pas le temps de faire PROP16, il faut quand même savoir la démontrer.
-
Références :
-
Fichier :
235 : Problèmes d'interversion de symboles en analyse.
-
Leçon :
-
Remarque :
J'ai voulu mettre beaucoup de choses dans cette leçon, selon les préférences on pourra retirer les probas ou la théorie de Baire mais je pense qu'il faut en mettre l'un des deux au vu du nom de la leçon qui incite à mettre d'autres choses que les théorèmes "classiques" d'interversion.
Comme j'ai dit dans d'autres commentaires, si on met la théorie de Baire, il faut l'avoir travaillée c'est-à-dire avoir une idée des démonstrations, et avoir fait quelques exercices.
Les incontournables sont la convergence uniforme et toutes les interversions qui en découlent, le TCD, le TCM, Fatou, Fubini, les théorèmes sur les intégrales à paramètres réels (qui découlent du TCD d'ailleurs), le théorème d'holomorphie sous l'intégrale (plus puissant),... Il faut bien accompagner tous ces théorèmes d'exemples d'application qui se trouvent assez bien dans les bouquins. Pensez aussi à la fonction Gamma, à la transformée de Fourier...
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Analyse
, Gourdon
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Oraux X-ENS Analyse 4
, Francinou, Gianella, Nicolas
-
Cours d'analyse fonctionnelle, Daniel Li
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Remarque :
Dans la présentation de 6 minutes, je pense qu'il faut bien insister sur l'utilité des suites de Cauchy dans les espaces complets (elles permettent de montrer qu'une suite converge sans connaître la limite).
Si j'étais tombé sur cette leçon le jour J, je ne sais pas si j'aurais parlé de prolongement d'applications car je n'étais pas assez à l'aise dessus.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Topologie générale et espaces normés
, Hage Hassan
-
Analyse
, Gourdon
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Cours d'analyse fonctionnelle, Daniel Li
-
Objectif Agrégation, Beck, Malick, Peyré
-
Topologie
, Queffelec
-
Équations différentielles, Florent Berthelin
-
Fichier :
206 : Exemples d’utilisation de la notion de dimension finie en analyse.
-
Leçon :
-
Remarque :
Leçon pas si facile que ça à préparer, je pense qu'il vaut mieux la faire en fin d'année afin d'avoir assez de recul et de savoir sur quelles notions on est à l'aise (étant donné qu'il y a plein de domaines possibles à mettre dans cette leçon).
Au départ j'avais mis comme deuxième développement le théorème de Cauchy-Lipschitz linéaire car dans le rapport du jury de la leçon 221 sur les équa diffs linéaires il est mentionné que sa preuve est un exemple fondamental d'intervention de la dimension finie en analyse. Cependant dans la preuve on n'utilise pas la dimension finie, même mes professeurs ne comprenaient pas ce que voulait dire le rapport. C'est en revanche un corollaire de ce théorème qui utilise la dimension finie, et qui permet de décrire l'espace des solutions. Si j'étais tombé sur cette leçon le jour J, je pense donc que faute de mieux, j'aurais fait comme développement la preuve de ce corollaire et d'une proposition sur les matrices fondamentales (avec pourquoi pas un exemple concret).
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Exemples d’applications.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples d’applications.
-
Leçon :
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Remarque :
Ce plan faisait partie de mes premiers, il contient donc le strict minimum. Je ne sais pas s'il fallait autant mettre l'accent sur la complétude, mais je ne voyais pas d'autres notions de mon niveau à mettre.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Exemples d’applications.
-
Leçon :
-
Remarque :
J'aimais beaucoup cette leçon, mon plan est classique mais efficace. Je pense que la partie sur les bases hilbertiennes peut être simplifiée (on peut juste parler de familles dénombrables). J'étais content de la partie sur l'espace $L^2$ car elle permettait bien d'illustrer l'utilité des espaces de Hilbert.
Malheureusement, à part le classique "Projection sur un convexe fermé" je ne trouvais pas de développement qui me plaise. Si j'étais passé dessus le jour J, j'aurais pris comme autre développement le théorème de représentation de Riesz, l'existence du gradient, et l'existence de l'adjoint. Mais je pense alors que mes deux devs auraient été trop similaires (tous les deux sont calculatoires).
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Cours d'analyse fonctionnelle, Daniel Li
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Objectif Agrégation, Beck, Malick, Peyré
-
Elements d'analyse fonctionnelle cours et exercises avec réponses, F. Hirsch, G. Lacombe
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Leçon assez vaste où l'on peut choisir quelles notions on aborde.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Leçon dont plusieurs parties sont en commun avec la leçon 229 sur les fonctions convexes. Cette leçon est assez visuelle, il est donc conseillé de faire des dessins au tableau pendant les 6 minutes de présentation.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Remarque :
Les 2 premières parties sont classiques et incontournables selon moi. On aurait pu parler de l'espace des fonctions de classe C infini mais ça m'avait l'air plus compliqué. J'ai mis la transformation de Fourier en application parce que j'aime bien ça.
J'utilise le Gourdon et Rombaldi pour la 1ère partie, le Li pour la 2e et le El Amrani pour la dernière. J'ai mis le Garet-Kurtzmann pour le 2e dév et parce qu'il me semble qu'il a une partie sur les espaces Lp.
-
Références :
-
Fichier :
205 : Espaces complets. Exemples et applications.
-
Leçon :
-
Remarque :
J'ai mis tout ce que je trouvais d'indispensable dans cette leçon. On peut faire des choix en fonction de ses affinités pour la 2e partie. Par contre, je n'avais pas de réf pour le prolongement d'applications.
J'utilise le Gourdon pour la majeure partie du plan, le Li pour les espaces Lp et le Berthelin pour le 2e dév.
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
209 : Approximation d’une fonction par des fonctions régulières. Exemples d’applications.
-
Leçon :
-
Remarque :
Cette leçon est pas évidente à préparer mais je trouve qu'il y a un incontournable: la convolution. Mes 2 dévs utilisent la convolution donc c'est un peu abusé.
J'utilise le Gourdon pour la 1ère partie, le Li pour la 2e, et le El Amrani pour la dernière. J'ai mis le Garet-Kurtzmann car il me semble qu'il met quelques résultats sur les espaces Lp.
-
Références :
-
Fichier :
213 : Espaces de Hilbert. Exemples d’applications.
-
Leçon :
-
Remarque :
Il y a pas mal de choses à raconter dans cette leçon. En fonction du niveau auquel on veut se placer, on peut aller très rapidement sur la 1ère partie. Mon 1er dév est la complétude des Lp que j'aurai adapter ici à juste la complétude de L2 et montrer qu'il est muni d'un produit scalaire. Je trouve ça un peu bancal malgré tout.
J'utilise le El Amrani et le Li pour la majeure partie du plan, le Gourdon pour quelques calculs avec les séries de Fourier et Objectif agreg pour quelques résultats sur les Hilbert.
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Les 2 premières parties sont incontournables dans cette leçon. Pour le reste, il s'agit d'une question de goût. J'ai parlé des Hilbert car la projection sur un convexe se recase très bien et est un résultat fondamental dans la théorie des Hilbert.
J'utilise le Gourdon et Rombaldi pour le I.1, Objectif agreg et Rouvière pour le I.2 et le II, et le Li pour la partie Hilbert.
-
Références :
-
Fichier :
234 : Fonctions et espaces de fonctions Lebesgue-intégrables.
-
Leçon :
-
Remarque :
J'ai pas encore eu le temps de taper le plan en LateX, toutes mes excuses si c'est pas très lisible.
Je pense que l'on peut enlever la 1ère partie sur la construction de l'intégrale de Lebesgue. Le jour J je l'aurai expédier très rapidement en tout cas. Les parties II et III sont classiques et incontournables, si ce n'est pour la convolution qui dépend des goûts. J'ai choisi de parler de transformée de Fourier en IV parce que j'aime bien ça.
J'utilise le Li pour la majeure partie, El Amrani pour Fourier et Garet-Kurtzmann car il parle un peu de théorie de la mesure et des espaces Lp. Je sais plus pourquoi j'ai mis Gourdon dans le plan.
-
Références :
-
Fichier :
235 : Problèmes d’interversion de symboles en analyse
-
Leçon :
-
Remarque :
J'ai pas encore eu le temps de taper le plan en LateX, toutes mes excuses si c'est pas très lisible.
Cette leçon est pas évidente à organiser. Il y a pleins d'incontournables à ne pas oublier. J'aurai mis le I.1 dans une 1ère partie à part car n'a rien avoir avec les suites et séries de fonctions.
J'utilise Gourdon et El Amrani pour la majeure partie du plan, le Quéffelec-Quéffelec pour le 1er dév, le Li pour les intégrales à paramètres et Berthelin pour le 2e dév.
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Remarque :
J'ai pas encore eu le temps de taper le plan en LateX, toutes mes excuses si c'est pas très lisible.
J'ai mis que les titres des parties parce que je savais ce que je voulais mettre dedans. Désolé parce que ça risque pas d'aider beaucoup. J'aurai mis une application aux probabilités dans la dernière partie.
J'utilise le Li pour la 1ère et 2e partie, le Gourdon pour le 1er dév, le El Amrani et Garet-Kurtzmann pour la partie Fourier. J'ai mis le Hauchecorne pour quelques contre-exemples à la 1ère partie.
-
Références :
-
Fichier :
246 : Séries de Fourier. Exemples et applications.
-
Leçon :
-
Remarque :
J'ai pas encore eu le temps de taper le plan en LateX, toutes mes excuses si c'est pas très lisible.
Mon plan est basique. J'ai mis tous les résultats incontournables sans aller très loin. Les personnes à l'aise peuvent aborder la divergence de séries de Fourier. Je trouve que le dév sur le calcul des zeta(2k) est pas incroyable ici mais je l'ai mis faute de mieux.
J'utilise le El Amrani pour tout le plan, il suffit de le suivre sans se poser de questions. J'utilise l'autre El Amrani et le Gourdon pour des exemples de calculs de sommes de séries, le Li pour le cadre L2 et le Francinou pour le 1er dév.
-
Références :
-
Fichier :
250 : Transformation de Fourier. Applications.
-
Leçon :
-
Remarque :
J'ai pas encore eu le temps de taper le plan en LateX, toutes mes excuses si c'est pas très lisible.
J'aime bien cette leçon car la partie dans L1 est incontournable et l'application en probas est sympa. Par contre pour la partie ça se corse un peu. Je parle de Schwartz parce que c'est un cadre agéable pour faire de la transformée de Fourier et le cadre L2 est je pense incontournable aussi. Cependant, il faut vraiment être au point sur le passage de L1 à L2. Je trouve que le El Amrani n'est pas très bien fait sur cette partie.
Je suis tombé dessus en oral blanc. Voici quelques questions/exos:
- Est-ce qu'il existe des fonctions dans L1 dont la transformée de Fourier n'est pas dans L1 ?
- Est-ce que ce sinus cardinal peut être la transformée de Fourier d’une fonction dans L2 ?
- On définit la transformée de Fourier dans l’espace de Schwartz que l’on peut étendre à L1 inter L2 sur lequel est également définit une transformée de Fourier. Comment s’assurer qu’elles coïncident sur Schwartz ?
- Si on prend f à support compact telle que sa transformée soit aussi à support compact. Que dire de f ?
- Soit X,Y des variables aléatoires indépendantes de même loi telle que leur somme suit une loi normale. Montrer qu’elles suivent une loi normale.
J'utilise le El Amrani pour la 1ère partie et le II.1, le Li pour le II.2 et le Garet-Kurtzmann pour les probas.
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
J'ai pas encore eu le temps de taper le plan en LateX, toutes mes excuses si c'est pas très lisible.
Dur de ne pas faire un copier-coller de la leçon sur les fonctions convexes. La 3e partie est classique et se recase bien.
J'utlise Objectif agreg et Rouvière pour la 1ère partie, le Rombaldi pour la 2e et le Li pour la 3e.
-
Références :
-
Fichier :