Développement : Equivalence des normes en dimension finie et théorème de Riesz

Détails/Enoncé :

Versions :

  • Auteur :
  • Remarque :
    Recasages: 203, 208

    Pour que le développement soit assez long, il faut déjà ne pas aller trop vite, et montrer l'un ou les deux détails suivants:
    - les compacts en dimension finie sont les fermés bornés (et non dire que c'est immédiat parce que c'est isomorphe à $\mathbb{K}^n$ ou je ne sais quel autre revers de la main) (c'est un procédé d'extraction diagonale, c'est intéressant en soi)
    - une application continue coercive en dimension finie atteint un minimum pour montrer que la distance à un sev est atteinte

    Gourdon Analyse [3e édition] p50+56

    Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
  • Référence :
  • Fichier :