Utilisée dans les 14 versions de développements suivants :
Théorème de Bohr Mollerup
-
Développement :
-
Remarque :
L'équivalent $\Gamma(x) \sim \sqrt{2\pi} ~x^{x-1/2} ~e^{-x}$ que j'utilise en cours de route s'obtient via la méthode de Laplace mais ma seule référence est un très bon cours... On peut se contenter de la méthode habituelle, que je trouve un peu moins élégante.
Le résultat permet de montrer la formule de Legendre sans aucun calcul, ça vaut le coup de le mettre au moins dans le plan.
-
Référence :
-
Fichier :
Dunford pour le calcul de rayon spectral
-
Développement :
-
Remarque :
Gay, Lemonnier, Rombaldi p 620, Houkari p 125, Isenmann p 155
NDLR : pas sûr de la réf pour Rombaldi
-
Références :
Minimisation d'une fonctionnelle quadratique
Théorème de Bohr-Mollerup (par la méthode d'Artin)
Caractérisation réelle de Gamma avec la log convexité
Convergence d'une suite lente
Étude de la fonction Gamma sur la droite réelle
-
Développement :
-
Références :
-
Fichier :
Etude de la fonction Gamma et lemme d'Euler
-
Développement :
-
Remarque :
Si on choisit de faire ce développement, il faut vraiment avoir travaillé la fonction Gamma de fond en comble, jusqu'à tracer son graphe. Il faut aussi connaître sa version complexe, et avoir une idée de comment on la prolonge de façon méromorphe sur $\mathbb{C}$ privé de $\mathbb{Z}^-$.
Sinon, ce développement se recase très bien et n'est vraiment pas difficile.
-
Référence :
-
Fichier :
Etude de la fonction Gamma et théorème de Bohr-Mollerup
Divergence de la série des inverses des nombres premiers
-
Développement :
-
Remarque :
On utilise un argument de probabilité pour montrer que la série des $\sum 1/{p_k}$ diverge. Je propose ensuite une application de ceci grâce au lemme de Borel-Cantelli. Deux références possibles pour la première partie : le Gourdon ou le Rombaldi. Je crois que je n'avais pas de référence pour l'application, mais ce n'est pas très difficile. J'admets ici que la fonction $\zeta$ diverge en $1^{+}$ mais je pense qu'il faut savoir le prouver pour présenter ce développement.
Côté recasages à mon avis:
Séries de nombres réels ou complexes
VA discrètes
Indépendance en proba
Je suppose que mettre ce développement en algèbre dans la leçon "nombres premiers" est envisageable, mais je pense qu'il y a des choses intéressantes et plus algébriques à faire dans cette leçon.
Les remarques que j'ai mises à la fin du document sont purement personnelles ; elles font souvent référence aux difficultés que j'ai pu avoir au moment de préparer mes développements, peut-être certains pourront les trouver utiles... S'il y a une erreur dans le document ou quelque chose de douteux, vous pouvez me contacter par mail avec plaisir.
-
Références :
-
Fichier :
Etude de la fonction Gamma et théorème de Bohr-Mollerup
-
Développement :
-
Remarque :
Gourdon page 315 pour l'étude de Gamma + lemme d'Euler
Rombaldi page 364
Adapter quels points détailler et quels points admettre / omettre selon les leçons.
Couplé avec les leçons 228, 229, 236, 239, 253
-
Références :
-
Fichier :
Étude de la fonction Gamma sur la droite réelle
-
Développement :
-
Remarque :
Gourdon page 315 pour l'étude de Gamma + lemme d'Euler
Rombaldi page 364
Adapter quels points détailler et quels points admettre / omettre selon les leçons.
Couplé avec les leçons 228, 229, 236, 239, 253
-
Références :
-
Fichier :
Inégalités de Young, Holder, Minkowsky et calcul de norme de l'injection de L1 dans Lp
-
Développement :
-
Remarque :
Pour les leçons : 201, (229), 234.
Je fais l'inégalité de Young, Hölder et Minkowski. En fonction du temps restant, on peut parler du fait que cela permet d'avoir une norme sur L^p, ou alors prouver l'injection de ces espaces quand on a une mesure finie.
-
Références :
-
Fichier :
Utilisée dans les 106 versions de leçons suivantes :
228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Mis à jour le 18.05.17
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Elements d'analyse réelle
, Rombaldi
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Cours d'analyse
, Pommelet
-
Analyse
, Gourdon
-
Optimisation et analyse convexe, Hiriart-Urruty
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
-
Introduction à l'analyse numérique matricielle et à l'optimisation
, Ciarlet
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité, dérivabilité, dérivation faible des fonctions réelles d’une variable réelle. Exemples et applications.
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1=f(un). Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Elements d'analyse réelle : Rombaldi
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Les] 131 Développements pour l’oral : D. Lesesvre
[OA] Objectif Agrégation : Beck, Malick, Peyré
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Cours d'analyse fonctionnelle, Daniel Li
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Rom] Elements d'analyse réelle : Rombaldi
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[Ouv2] Probabilités 2 : Ouvrard
[GouAn] Analyse : Gourdon
[FGN An2] Oraux X-ENS Analyse 2 : Francinou, Gianella, Nicolas
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Elements d'analyse réelle
, Rombaldi
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Probabilités 2
, Ouvrard
-
Analyse
, Gourdon
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Elements d'analyse réelle : Rombaldi
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Les] 131 Développements pour l’oral : D. Lesesvre
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Cours d'analyse fonctionnelle, Daniel Li
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[RDO] Cours de mathématiques, topologie et éléments d'analyse Tome 3 : Ramis, Deschamps, Odoux
[GouAn] Analyse : Gourdon
[Rom] Elements d'analyse réelle : Rombaldi
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
[NR] No Reference :(
[Rou] Petit guide de calcul différentiel : Rouvière
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Has] Topologie générale et espaces normés : Hage Hassan
[Les] 131 Développements pour l’oral : D. Lesesvre
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Tau] Analyse complexe pour la Licence 3 : Tauvel
[Rom] Elements d'analyse réelle : Rombaldi
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
[NR] No Reference :(
-
Références :
-
Topologie générale et espaces normés
, Hage Hassan
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Cours d'analyse fonctionnelle, Daniel Li
-
Analyse complexe pour la Licence 3, Tauvel
-
Elements d'analyse réelle
, Rombaldi
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1 = f(un). Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
-
Leçon :
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Cours de mathématiques, Tome 3 : Compléments d'analyse, Arnaudiès, Fraysse
-
Oraux X-ENS Analyse 1
, Francinou, Gianella, Nicolas
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Analyse
, Gourdon
-
Cours d'analyse
, Pommelet
-
Elements d'analyse réelle
, Rombaldi
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
265 : Exemples d'études et d'applications de fonctions usuelles et spéciales.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Références :
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Analyse
, Gourdon
-
Elements d'analyse réelle
, Rombaldi
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Analyse
, Gourdon
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Objectif Agrégation, Beck, Malick, Peyré
-
Cours d'analyse fonctionnelle, Daniel Li
-
Fichier :
102 : Groupe des nombres complexes de module 1. Racines de l’unité. Applications.
-
Leçon :
-
Remarque :
Référence supplémentaire: Algèbre et géométrie: CAPES et Agrégation : Pierre Burg
J'avais initialement ajouté le paragraphe sur les angles orientés, non orientés, mesure principale et écart angulaire pour combler le vide laissé par l'absence de caractères, mais finalement la leçon est déjà assez longue sans ça (on peut donc enlever les items 40 à 44).
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
221 : Equations différentielles linéaires. Systèmes d’équations différentielles linéaires. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Remarque :
Plan un peu court.
-
Références :
-
Fichier :
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1 = f(un). Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
235 : Problèmes d’interversion en analyse.
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Références :
-
Fichier :
265 : Exemples d’études et d’applications de fonctions usuelles et spéciales.
-
Leçon :
-
Références :
-
Analyse complexe pour la Licence 3, Tauvel
-
Elements d'analyse réelle
, Rombaldi
-
Analyse
, Gourdon
-
Objectif Agrégation, Beck, Malick, Peyré
-
Mathématiques pour l'agrégation : Analyse et Probabilités , Jean-François Dantzer
-
Les fonctions spéciales vues par les problèmes, 517.5 , Groux, Soulat
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Calcul Intégral
, Faraut
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Remarque :
Scan un peu flou désolé.
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
253 : Utilisation de la notion de convexité en analyse.
148 : Exemples de décompositions de matrices. Applications.
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Remarque :
Plan réalisé durant un oral blanc de fin d'année (j'avais préparé la leçon durant l'année, quand même). On peut aller bien plus loin, mais l'exemple 37 est déjà une porte ouverte à bien trop de questions d'analyse spectrale… (cf. plan de EWna)
L'application 30 est un exemple en lien avec un de mes devs pour une autre leçon, il est assez drôle de recaser ainsi du savoir, pour de potentielles questions à l'oral, surtout pour une leçon d'exemples comme celle-ci.
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
155 : Exponentielle de matrices. Applications.
228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
159 : Formes linéaires et dualité en dimension finie. Exemples et applications.
223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
181 : Convexité dans Rn. Applications en algèbre et en géométrie.
127 : Exemples de nombres remarquables. Exemples d'anneaux de nombres remarquables. Applications.
-
Leçon :
-
Remarque :
C'est la toute dernière leçon que j'ai faite.
La partie sur les nombres décimaux est assez (peut-être trop ?) longue, mais j'avais travaillé les démonstrations. Je pense que c'est ce qu'il faut faire si on choisit de s'étendre autant sur ce sujet.
Je doute un peu de la pertinence des carrés dans $\mathbb{F}_q$ dans cette leçon... C'était un sujet que je maîtrisais bien donc je le mettais partout où je pouvais le mettre :)
Les constructions géométriques à la règle et au compas me semblent être un bon investissement à faire pendant l'année (au moins pour les leçons 125,127,191)
-
Références :
-
Fichier :
127 : Exemples de nombres remarquables. Exemples d'anneaux de nombres remarquables. Applications.
-
Leçon :
-
Remarque :
Cette leçon est nouvelle donc on ne connaît pas encore exactement les attentes du jury mais les anneaux de la forme Z[w] et les nombres algébriques semblent indispensables. Parler du corps des nombres constructibles peut être un bon investissement car ce n'est pas très difficile et on peut en parler dans plusieurs autres leçons.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
209 : Approximation d'une fonction par des fonctions régulières. Exemples d'applications.
-
Leçon :
-
Remarque :
/!\ Après coup, j'ai modifié la partie I-2) pour ne parler que de Stone-Weierstrass : voir la partie consacrée à ce sujet dans le Hirsch-Lacombe. En DEV 1, je traite donc le théorème de Stone-Weierstrass et non pas Bernstein et Weierstrass. Cela m'a permis de ne pas utiliser le Zuily-Queffelec pour cette leçon (je n'aime pas du tout ce livre).
Sinon voilà, je pense que tout y est à peu près : formules de Taylor, résultats de densité, convolution, approximation de l'unité, séries de Fourier... On peut sûrement penser à d'autres choses.
Il faut savoir motiver l'intérêt d'approcher une fonction par des fonctions régulières : en fonction de comment on fait une telle approximation, on va pouvoir prolonger des propriétés propres à des fonctions "lisses" à des fonctions plus "sauvages" comme des fonctions $L^p$ par exemple.
-
Références :
-
Fichier :
218 : Formules de Taylor. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon n'est franchement pas cool... Au premier abord, je trouve qu'on a du mal à voir ce qu'on va bien pouvoir mettre dedans et puis en fouillant le Rombaldi Analyse réelle et le Gourdon, on trouve tant bien que mal des choses... N'étant pas très bon en calcul, je n'aurais pas aimé tomber dessus le jour J...
Le plus dur est de trouver des développements... La façon dont j'ai tourné la démo du TCL (et surtout les lemmes préliminaires) permet de bien justifier le DEV1 pour cette leçon, mais le DEV2 est vraiment bof... On utilise juste à 2 reprises Taylor-Lagrange à l'ordre 2...
Il faut penser à parler des développements en série entière, ça permet de remplir la leçon... Et d'amener le jury vers des questions pas trop déconcertantes je pense...
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est plutôt cool à faire, elle permet de réviser pas mal de choses : compacité, convexité, techniques d'optimisation... J'ai oublié de mettre en application du théorème des extrema liés la différentielle du det et le théorème donnant les matrices minimisant la norme sur $\text{SL}_n(\mathbb{R})$ (que je fais en DEV dans d'autres leçons). Une autre jolie application du théorème des extrema liés est la suivante :
Soit $(E,(.|.))$ un espace euclidien et $u$ un endomorphisme auto-adjoint de $E$. Alors, la quantité : $\lambda=\text{sup}_{\|x\|=1} (u(x)|x) $ est valeur propre de $u$.
J'ai mis la méthode de Newton car le rapport du jury en parlait, mais je ne suis pas sûr qu'il s'agissait de cette méthode de Newton là... Ceci dit, elle se justifie quand même dans cette leçon.
On peut je pense approfondir la partie sur la méthode du gradient. On trouve de jolis dessins explicatifs dans le Beck.
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon paraît facile mais en réalité elle me faisait peur... En effet, comme c'est une leçon niveau première année, le jury peut s'attendre à beaucoup de recul sur ces notions et poser des exos assez avancés... En plus, je trouve que les notions de limsup et liminf ne sont pas très faciles, il faut d'ailleurs bien travailler les démonstrations sur ce sujet.
J'ai choisi de parler de vitesse et d'accélération de convergence car je ne connaissais pas avant de faire cette leçon, ça m'a permis d'apprendre des choses. On peut aussi parler de suites équiréparties...
Mon DEV1 n'a pas de référence, mais il y a la méthode générale pour étudier une suite récurrente dans le Bernis, et il suffit de l'appliquer à Arctan.
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Remarque :
Cette leçon est l'une des plus difficiles en analyse, si ce n'est LA plus difficile. La difficulté provient vraiment du fait que la leçon s'appelle "Exemples de..." et que dans les références, on ne trouve pas 50000 exemples...
Tant bien que mal avec le Gourdon et le Rombaldi d'analyse réelle, on peut faire quelque chose de potable...
Je pense que mes développements rentrent bien dans la leçon, mais le plus effrayant ce sont les questions du jury qui peuvent être très vite calculatoires...
Il faut mettre Taylor-Young et les développements limités, la partie III-3) est indispensable, parce que les DA servent souvent à ça...
On pourrait aussi éventuellement parler de vitesse et d'accélération de convergence.
Le prof qui a encadré la leçon nous a mis en garde sur une chose importante : un équivalent n'est PAS un développement asymptotique. A la base, j'avais mis la méthode de Newton en développement, mais à cause de cette remarque je ne pouvais plus la mettre... J'ai donc mis la formule d'Euler-Maclaurin qui demande un certain travail sur les polynômes de Bernoulli (en plus c'est que du calcul...) mais ça se recase dans la 230 et c'est bien connaître les polynômes de Bernoulli
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
209 : Approximation d'une fonction par des fonctions régulières. Exemples d'applications.
218 : Formules de Taylor. Exemples et applications.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
/!\ Après coup, j'ai remplacé le DEV1 par le théorème de Stone-Weierstrass ! Voir la partie du Hirsch-Lacombe qui lui est consacré. Pour le justifier dans cette leçon, il faut dire qu'on est conscient qu'on dépasse le cadre réel en se plaçant sur un espace métrique compact, mais que c'est tout de même un théorème qu'on utilise souvent dans le cadre réel et qui permet d'établir des résultats de densité intéressants : densité des polynômes, des polynômes trigonométriques, des fonctions lipschitziennes, des fonctions affines par morceaux...
Cette leçon est "facile" donc je pense qu'il faut s'attendre à des questions assez poussées du jury : étude de fonctions spéciales, et surtout exemples et contre-exemples (fonction continue nulle part dérivable, fonction discontinue partout sauf en un point, fonction dérivable de dérivée non continue...) Le Hauchecorne fait assez bien ce travail.
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
Mon plan est très simple mais efficace (et facile à retenir !) La difficulté de cette leçon repose sur les démonstrations des résultats de convexité que je trouve assez difficiles contrairement à d'autres démonstrations. C'est souvent une utilisation "futée" de l'inégalité des pentes.
L'étude de la convexité se motive notamment par les inégalités qu'elle produit, et des résultats de passage du local au global.
Il faut savoir faire le lien entre ensemble convexe et fonction convexe : c'est l'épigraphe ! Il faut aussi absolument accompagner cette leçon d'une annexe avec des dessins, dans la mienne il n'y en a peut-être pas assez...
Je me dis aussi qu'au vu du titre de la leçon, il faut savoir faire un lien entre les fonctions monotones et les fonctions convexe ; je pense qu'une bonne réponse à cette question peut se trouver dans le cadre des fonctions régulières...
J'ai mis le processus de Galton-Watson car il se recase assez bien, on peut orienter ce qu'on démontre soit vers les probas soit vers la convexité (ou les deux si on va assez vite). Cependant, il me semble que le jury en a un peu marre de voir ce développement, donc si vous trouvez aussi bien ou mieux, n'hésitez pas ! Ce développement se trouve dans le Delmas, Modèle Aléatoires (je ne le trouve pas sur le site)
-
Références :
-
Fichier :
244 : Exemples d'études et d'applcations de fonctions usuelles et spéciales.
253 : Utilisation de la notion de convexité en analyse.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
La difficulté de cette leçon repose sur les démonstrations des résultats de convexité qui sont assez difficiles (c'est souvent une utilisation futée de l'inégalité des pentes)...
L'étude de la convexité se motive notamment par les inégalités qu'elle produit, et des résultats de passage du local au global. Il faut aussi absolument accompagner cette leçon avec des dessins en annexe pour illustrer les différentes situations.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.
-
Leçon :
-
Remarque :
Cette leçon n'est pas des plus faciles à travailler... Du moins selon moi car je ne suis pas très doué en calcul...
Sinon les choses se trouvent plutôt bien dans le Gourdon pour les méthodes directes, le Briane-Pagès pour les méthodes indirectes (ou le Li Intégration selon les préférences)
J'ai mis quelques exemples quand même, mais peut-être pas assez... C'est ça aussi la difficulté des leçons "illustrer par des exemples..." ou "exemples de...", c'est qu'on sait qu'on doit mettre des exemples mais pas à quel point...
Il me semble important de parler un peu de calcul approché. On peut même en parler plus que cela, mais je suis moyennement à l'aise avec l'analyse numérique donc j'ai mis le strict minimum. C'est bien de parler de Monte-Carlo je pense, même si on ne fait pas l'option A, c'est assez facile à comprendre (attention, avec Monte-Carlo, il faut penser à donner un intervalle de confiance !!!)
En DEV1, j'ai mis l'étude de la fonction Gamma, qui fonctionne, mais je pense qu'on peut mettre à la place l'injectivité de la transformée de Fourier avec le calcul de la TF d'une Gaussienne et la formule d'échange, qui rentrerait peut-être mieux... C'est peut-être ce que j'aurais fait si j'étais tombé dessus le jour J.
/!\ Après coup, j'ai légèrement modifié mon DEV2, je ne calculais pas cette intégrale mais une intégrale plus sophistiquée : $I=\int\limits_{0}^{+\infty} \frac{t^n}{1+t^{\alpha}}dt$ pour $n>\alpha+1>0$ par la même méthode (avec le théorème des résidus et un bon chemin... Il est dans le Tauvel). Il faut vraiment beaucoup s'entraîner sur un tel développement car c'est beaucoup de calcul et le jour J avec le stress et le temps limité, on peut vite s'embourber.
Même si on ne fait pas un DEV qui utilise la méthode des résidus dans cette leçon, je conseillerais de bien réviser cette méthode pour cette leçon, je pense que le jury demandera forcément de calculer une intégrale de cette manière... On peut aussi rajouter dans le plan la formule et le théorème de Cauchy que j'ai oubliés !
Finalement, je n'utilise pas le Queffelec d'analyse complexe dans cette leçon.
-
Références :
-
Fichier :
244 : Exemples d'études et d'applcations de fonctions usuelles et spéciales.
-
Leçon :
-
Remarque :
J'ai mis beaucoup de temps à trouver un plan logique et bien construit pour cette leçon, cela a été fait en collaboration avec Tintin, et je pense qu'il est plutôt pas mal. On peut se dire que parler des fonctions circulaires avant l'exponentielle complexe n'est pas possible, mais en fait si, c'est d'ailleurs comme ça qu'on faisait en Sup, on montrait que cos et sin étaient dérivables en utilisant uniquement le cercle trigonométrique. Ceci soulève une remarque importante : selon l'ordre avec lequel on choisit de mettre les notions, il faut bien s'assurer qu'il n'y a pas d'incohérence, pas de "serpent qui se mord la queue", et qu'on sait à peu près tout démontrer dans cet ordre-là.
C'est pas mal de bosser la fonction Gamma en profondeur, de la définition jusqu'au tracé du graphe (qu'il faut savoir faire si on traite la fonction Gamma en DEV) en passant par son lien avec la fonction Beta (le plus rapide est de passer par la convolution).
Etudier la fonction zeta est aussi possible en DEV, la majorité des résultats se trouve dans le Gourdon, mais on peut approfondir avec le Zuily-Queffelec (même si personnellement je déconseillerais d'utiliser ce livre).
On peut étudier des fonctions encore plus sophistiquées, je pense à la fonction Digamma... On peut aussi s'intéresser au prolongement méromorphe de Gamma...
N'hésitez pas à tracer des graphes en annexe, j'aurais d'ailleurs dû ajouter celui de la fonction Gamma, les dessins sont toujours appréciés du jury.
-
Références :
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Elements d'analyse réelle
, Rombaldi
-
Cours de mathématiques, Tome 2 : Analyse, Arnaudiès, Fraysse
-
Analyse
, Gourdon
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Cette leçon est un quasi copier-coller de ma leçon 229, en remplaçant juste le I. En vrai, je pense que ça passe, il faut juste bien motiver tout ça dans les 6 minutes : comme je l'ai dit pour la 229, la convexité est utile pour établir des inégalités intéressantes et étendre des résultats locaux au global (par exemple sur l'optimisation).
La partie convexité en analyse complexe est un peu bof... On peut la virer je pense, mais ça donne au moins une application en plus...
Je suis resté très basique car je trouve la convexité difficile, mais le rapport du jury propose plein de pistes d'approfondissement.
Pour Galton-Watson, il faut bien justifier en quoi la convexité intervient dans les démonstrations. J'ai pris ce développement dans le livre de Delmas, Modèles aléatoires, que je ne trouve pas sur le site.
-
Références :
-
Topologie générale et espaces normés
, Hage Hassan
-
Elements d'analyse fonctionnelle cours et exercises avec réponses, F. Hirsch, G. Lacombe
-
Elements d'analyse réelle
, Rombaldi
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse réelle et complexe
, Rudin
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.
-
Leçon :
-
Remarque :
Il faut que les théorèmes classiques de continuité, dérivabilité, holomorphie sous l'intégrale apparaissent et soient accompagnés d'exemples. Il est pertinent de développer la convolution, les approximations de l'unité et la transformée de Fourier dans L^1(R). Les probabilités et l'analyse complexe peuvent faire de bonnes applications.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
244 : Exemples d'études et d'applcations de fonctions usuelles et spéciales.
-
Leçon :
-
Remarque :
Il faut faire attention lorsque l'on parle des fonctions trigonométriques de bien donner un sens logique en sachant comment démontrer les choses (par exemple si on commence la leçon avec les formules trigonométriques du cosinus et du sinus et que l'on dit ensuite que ces fonctions sont dérivables alors il faut faire la démonstration avec ces formules trigonométriques et il ne faut surtout pas dire que c'est une série entière) : c'est cela qui rend la leçon difficile à faire...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse
, Gourdon
-
Elements d'analyse réelle
, Rombaldi
-
Mathématiques pour l'agrégation, Analyse et probabilités, Jean-Étienne Rombaldi
-
Tout-en-un MP/MP*, Claude Deschamps
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
La convexité est utile pour établir des inégalités intéressantes et étendre des résultats locaux au global (par exemple sur l'optimisation ou l'analyse complexe). Il faut tenter de donner le plus d'applications possibles dans divers domaines et dire où elle intervient.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
218 : Formules de Taylor. Exemples et applications.
-
Leçon :
-
Remarque :
J'aime pas.
-
Références :
209 : Approximation d’une fonction par des fonctions régulières. Exemples d’applications.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples d’applications.
-
Leçon :
-
Remarque :
Je n'aimais pas du tout cette leçon, donc je ne suis pas sûr que mon plan soit bon (ma 3e partie est un copié-collé de la leçon sur les séries de Fourier, donc un peu abusé).
Si j'étais tombé dessus le jour J, j'aurais même enlevé la 2e partie (sur la théorie de l'intégration) par peur des questions qui pouvaient arriver.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
215 : Applications différentiables définies sur un ouvert de Rn. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon peut être faite uniquement avec le livre de El Amrani (merci à ce monsieur pour tous ses livres). D'ailleurs avant les écrits mes bases de calcul diff n'étaient pas très solides, et lire ce livre m'a été d'une grande aide pour comprendre cette matière.
Si vous prenez cette leçon, il faut savoir calculer la différentielle de fonctions classiques (voir les exemples et exercices du livre cité plus haut).
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
218 : Formules de Taylor. Exemples et applications.
-
Leçon :
-
Remarque :
Mon plan n'est pas entièrement rédigé, il faudrait sûrement enlever une des applications car sinon il est trop long. Je ne sais pas s'il est pertinent de mettre à la fois les formules de Taylor pour une variable, et celles pour plusieurs variables.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Leçon assez vaste où l'on peut choisir quelles notions on aborde.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
223 : Suites réelles et complexes. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
Leçon pas compliquée à faire, il suffit de suivre le El Amrani. En revanche, je pense qu'il faut faire pas mal d'exercices pour cette leçon car ce sont des notions qui sont de niveau L1-L2 et donc on n'a plus forcément les bons réflexes.
Au départ mon 2e développement était sur les valeurs d'adhérence d'une certaine suite, mais je l'ai vite abandonné car je le trouvais trop compliqué. J'aurais donc fait le développement sur le théorème de point fixe, en le mettant dans la partie sur les suites de Cauchy.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Remarque :
C'est juste un méta-plan que j'ai fais à la va-vite avant les oraux, histoire de sauver les meubles si je tombais dessus. Je n'aimais pas du tout cette leçon, maitriser autant d'exemples représentait un trop gros travail. Je mets quand même ce que j'ai fais, si cela peut donner des idées, mais à utiliser avec prudence.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Leçon que j'ai aimé préparer, surtout que mes sous-parties de la partie 3 se recasent dans d'autres leçons. Dans l'idéal, je pense qu'il faut un développement sur la continuité et un autre sur la dérivabilité.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
J'étais un grand fan des fonctions convexes, mais malheureusement je n'aimais pas du tout ma partie sur les fonctions monotones. Même dans mes applications, cela ne concernait presque que les fonctions convexes.
Comme développement, j'avais pris les critères de convexité d'une fonction différentiable (qui ne figure pas dans mon plan). Je n'en trouvais pas de deuxième donc le jour J j'aurais fait les inégalités de Young-Holder-Minkowski, mais qui est limite hors-sujet (la convexité n'intervient que pour l'inégalité de Young). Je n'avais pas réussi à trouver de développement qui me convienne sur les fonctions monotones.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Cours de mathématiques, topologie et éléments d'analyse Tome 3, Ramis, Deschamps, Odoux
-
Analyse
, Gourdon
-
Elements d'analyse réelle
, Rombaldi
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Leçon dont plusieurs parties sont en commun avec la leçon 229 sur les fonctions convexes. Cette leçon est assez visuelle, il est donc conseillé de faire des dessins au tableau pendant les 6 minutes de présentation.
Mes plans sont en général inspirés de ceux de Matilde, Hugo, Mathis Lemay, Tintin, RMaurice et Ewna. Merci à elles/eux !
Mes plans sont personnels, ne prenez que ce que vous maitrisez : n'oubliez pas que le jour de l'oral, le jury peut vous interroger sur n'importe quel item de votre plan.
N'hésitez pas à me signaler s'il y a des erreurs.
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Remarque :
Les 2 premières parties sont classiques et incontournables selon moi. On aurait pu parler de l'espace des fonctions de classe C infini mais ça m'avait l'air plus compliqué. J'ai mis la transformation de Fourier en application parce que j'aime bien ça.
J'utilise le Gourdon et Rombaldi pour la 1ère partie, le Li pour la 2e et le El Amrani pour la dernière. J'ai mis le Garet-Kurtzmann pour le 2e dév et parce qu'il me semble qu'il a une partie sur les espaces Lp.
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Remarque :
Mon plan est assez basique et classique. Je suis tombé dessus le jour J.
Voici quelques questions/exos que j'ai eu le jour J:
- Soit E de dimension infinie et K un compact de E. Que pouvez-vous dire de l’intérieur de K ?
- Qu’est-ce que vous pouvez dire de la distance d’un compact à un fermé ?
- Est-ce qu’on pourrait montrer que la distance entre le compact et le fermé est strictement positive s'ils sont disjoints ?
- On considère, dans l^1 muni de sa norme 1, l’ensemble des éléments vérifiant somme des n*|a_n| <= 1. Montrez qu’il est compact.
J'ai eu 16.25
J'utilise le Gourdon pour la majeure partie du plan, le Rombaldi pour certaines démos que le Gourdon ne fait pas.
-
Références :
-
Fichier :
204 : Connexité. Exemples d’applications.
-
Leçon :
-
Remarque :
Mon plan est assez basique. Je suis pas allé chercher dans des notions très poussées comme par exemple la simple connexité.
J'utilise le Gourdon pour la 1ère partie, le Rombaldi pour l'analyse réelle, le Quéffelec-Quéffelec pour l'analyse complexe et le Caldero pour le 2e dév.
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Les 2 premières parties sont incontournables dans cette leçon. Pour le reste, il s'agit d'une question de goût. J'ai parlé des Hilbert car la projection sur un convexe se recase très bien et est un résultat fondamental dans la théorie des Hilbert.
J'utilise le Gourdon et Rombaldi pour le I.1, Objectif agreg et Rouvière pour le I.2 et le II, et le Li pour la partie Hilbert.
-
Références :
-
Fichier :
223 : Suites réelles et complexes. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
Je trouve que c'est dur de dépasser le niveau L1-L2 sur cette leçon. J'ai mis beaucoup de choses mais je pense pas que ça tienne en 3 pages.
J'utilise le El Amrani, Gourdon et Rombaldi pour la majeure partie du plan, le Rouvière pour le 1er dév et le Francinou pour le 2e dév.
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Remarque :
J'aime pas cette leçon et je pense que c'est le cas de beaucoup de gens. C'est des notions de L1-L2 donc faut vraiment être au point dessus. Je trouve que les exos peuvent vite être durs car c'est souvent des petites astuces. J'ai mis pleins d'exemples que j'ai pris un peu partout. Je suis pas convaincu d'avoir mis les séries numériques avant les suites numériques mais ça peut se défendre. Il y a moyen de mettre des exemples plus exotiques en piochant par exemple dans les Oraux X-ENS.
J'utilise le Gourdon, Rombaldi et El Amrani pour la partie cours mais aussi pour les exemples, ainsi que le Garet-Kurtzmann, Rouvière et enfin le Francinou pour le 2e dév.
-
Références :
-
Analyse
, Gourdon
-
Elements d'analyse réelle
, Rombaldi
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
De l'intégration aux probabilités, Garet, Kurtzman
-
Petit guide de calcul différentiel
, Rouvière
-
Oraux X-ENS Analyse 1
, Francinou, Gianella, Nicolas
-
Fichier :
226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Remarque :
J'ai hésité à faire l'impasse sur cette leçon, qui est une bonne leçon d'option B. J'ai essayé de mettre des trucs classiques.
J'utilise principalement le Gourdon. J'utilise aussi le Rombaldi, El Amrani. Le Rouvière pour la méthode de Newton et Berthelin pour Cauchy-Lipschitz et méthode d'Euler.
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Je trouve que c'est pas évident d'aborder ces notions de L1-L2 mais d'aller un peu plus loin en même temps. A la base, j'ai choisi la méthode de Newton spécifiquement pour cette leçon puis en fait ça se recase dans au moins 5-6 leçons.
J'utilise le Gourdon et Rombaldi majoritairement et le Rouvière pour Newton.
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
J'ai pas encore eu le temps de taper le plan en LateX, toutes mes excuses si c'est pas très lisible.
Je trouve mon dév sur Newton assez limite dans la partie fonction monotone. On aurait pu faire une partie sur les probas (voir ce que propose Mr_Syndrome). Pour le 2e dév sur le point de Fermat, il faut montrer que la fonction est strictement convexe plutôt que de suivre le Rouvière. Objectif agreg donne une rapide démonstration.
J'utilise le Rombaldi, Gourdon et Objectif agreg pour la majeure partie et le Garet-Kurtzmann pour la partie probas. Il me semble que l'inégalité de Jensen n'est démontré que dans le Garet-Kurtzmann parmi ces 3 livres.
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
J'ai pas encore eu le temps de taper le plan en LateX, toutes mes excuses si c'est pas très lisible.
Dur de ne pas faire un copier-coller de la leçon sur les fonctions convexes. La 3e partie est classique et se recase bien.
J'utlise Objectif agreg et Rouvière pour la 1ère partie, le Rombaldi pour la 2e et le Li pour la 3e.
-
Références :
-
Fichier :
127 : Exemples de nombres remarquables. Exemples d’anneaux de nombres remarquables. Applications.
-
Leçon :
-
Remarque :
Ce sont les grandes lignes de mon plan, non-vérifié par une personne compétente. Désolé pour l'écriture. Je me suis (beaucoup) inspiré de Tintin et Théo Ternier (J'ai eu l'agreg en partie grâce à eux, merci !).
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples d’applications.
-
Leçon :
-
Remarque :
Ce sont les grandes lignes de mon plan, non-vérifié par une personne compétente. Désolé pour l'écriture. Je me suis (beaucoup) inspiré de Tintin et Théo Ternier (J'ai eu l'agreg en partie grâce à eux, merci !).
-
Références :
-
Fichier :
218 : Formules de Taylor. Exemples et applications.
-
Leçon :
-
Remarque :
Ce sont les grandes lignes de mon plan, non-vérifié par une personne compétente. Désolé pour l'écriture. Je me suis (beaucoup) inspiré de Tintin et Théo Ternier (J'ai eu l'agreg en partie grâce à eux, merci !).
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Ce sont les grandes lignes de mon plan, non-vérifié par une personne compétente. Désolé pour l'écriture. Je me suis (beaucoup) inspiré de Tintin et Théo Ternier (J'ai eu l'agreg en partie grâce à eux, merci !).
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Remarque :
Ce sont les grandes lignes de mon plan, non-vérifié par une personne compétente. Désolé pour l'écriture. Je me suis (beaucoup) inspiré de Tintin et Théo Ternier (J'ai eu l'agreg en partie grâce à eux, merci !).
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Ce sont les grandes lignes de mon plan, non-vérifié par une personne compétente. Désolé pour l'écriture. Je me suis (beaucoup) inspiré de Tintin et Théo Ternier (J'ai eu l'agreg en partie grâce à eux, merci !).
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
Ce sont les grandes lignes de mon plan, non-vérifié par une personne compétente. Désolé pour l'écriture. Je me suis (beaucoup) inspiré de Tintin et Théo Ternier (J'ai eu l'agreg en partie grâce à eux, merci !).
-
Références :
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
Ce sont les grandes lignes de mon plan, non-vérifié par une personne compétente. Désolé pour l'écriture. Je me suis (beaucoup) inspiré de Tintin et Théo Ternier (J'ai eu l'agreg en partie grâce à eux, merci !).
-
Références :
-
Fichier :