Utilisée dans les 2 versions de développements suivants :
Théorème de Weierstrass
-
Développement :
-
Remarque :
Le développement est un peu court alors il faut prendre son temps et bien détailler toutes les étapes (ou alors faire une autre application en plus).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Référence :
-
Fichier :
Utilisée dans les 38 versions de leçons suivantes :
121 : Nombres premiers. Applications.
-
Leçon :
-
Remarque :
Cette leçon est très vaste et il faut faire des choix, c'est donc l'occasion de vraiment mettre des choses avec lesquelles on est à l'aise ! Il faut aussi se méfier du fait que lorsque cette leçon apparaît dans un tirage, elle est quasi systématiquement choisie par le candidat et il est donc difficile de se démarquer dessus et les candidats sont censés bien maîtriser le sujet... Les résultats sur la répartition des nombres premiers peuvent être admis sans problème (certaines des démonstrations étant très longues) par contre il faut s'attendre à des questions sur des cas particuliers du théorème de la progression arithmétique de Dirichlet (le théorème de Dirichlet faible).
La théorie de Sylow est hors programme, mais je trouve que c'est un bon investissement à faire durant l'année.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
122 : Anneaux principaux. Exemples et applications.
-
Leçon :
-
Remarque :
Dans cette leçon il faut connaître les implications entre les différents types d'anneaux (euclidiens, principaux, factoriels, etc.) et connaître des contre-exemples. Il faut également savoir ce que chaque catégorie d'anneaux apporte par rapport aux autres.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.
-
Leçon :
-
Remarque :
La majeure partie de cette leçon peut être faite avec le Perrin (surtout les extensions de corps). Il faut donner des critères d'irréductibilité avec des applications et arriver à les mixer avec la théorie des corps et si possible parler un peu d'algèbre linéaire avec le polynôme minimal et ce qu'il apporte. Il faut également savoir montrer qu'un polynôme est irréductible (ou au moins proposer des critères), mais aussi construire des corps finis comme F_4 ou F_9 avec un polynôme irréductible, puis faire des calculs dans le corps fini ainsi construit (produits, inverses, etc.).
Il faut éviter de s'aventurer en théorie de Galois car ça demande un gros investissement juste pour peu de leçons et le sujet est très compliqué avec peu de recul... Par contre, la constructibilité n'est pas très difficile et on peut en parler dans plusieurs leçons donc l'investissement peut vite être rentabiliser !
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
148 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est vaste et il y a beaucoup de choses à dire ! Il est notamment possible de parler de théorie des corps avec le théorème de la base télescopique puisque ces notions exploitent entièrement les idée d'espace vectoriel de dimension finie.
Je pense aussi que c'est une leçon considérée comme "facile", le jury attends un niveau assez élevé dessus... Je pense qu'il faut bien connaître les démonstrations (au moins les idées).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
149 : Déterminant. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon est assez vaste et le Deschamps de MPSI (ou de première année pour les nouvelles versions) fait assez l'affaire car donne toutes les définitions et propriétés de base ! Bien qu'il s'agisse d'une leçon d'algèbre il peut être bien de parler des applications du déterminant en analyse.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Algèbre et probabilités, Gourdon
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Tout-en-un MP/MP*, Claude Deschamps
-
Analyse
, Gourdon
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Petit guide de calcul différentiel
, Rouvière
-
Fichier :
150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
-
Leçon :
-
Remarque :
Je suis resté sur des choses relativement basiques pour cette leçon en donnant des résultats de deuxième année (polynôme caractéristique/minimal et réduction d'endomorphismes) et des applications comme le calcul d'inverse, de puissance ou d'exponentielle d'une matrice.
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
151 : Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.
-
Leçon :
-
Remarque :
Les endomorphismes cycliques sont importants dans cette leçon et on peut aller jusqu'à la décomposition Frobenius et les résultats théoriques qui suivent si on le désire (à condition d'avoir les idées des démos et de savoir faire en pratique avec l'algorithme de Smith).
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
152 : Endomorphismes diagonalisables en dimension finie.
-
Leçon :
-
Remarque :
C'est une leçon de niveau de deuxième année à priori mais il faut en contreparti être à l'aise dessus. En particulier le critère de co-diagonalisabilité doit être connu et avoir une idée de la démonstration (d'autant plus que ça tombe souvent aux écrits !). La topologie sur les espaces de matrices peut être un bon investissement car les gens en parlent assez peu dans le cadre de l'agrégation et ça permet de se démarquer : l'investissement est donc rentable.
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
153 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d'éléments propres. Applications.
-
Leçon :
-
Remarque :
Cette leçon paraît facile au premier abord, mais comme il faut éviter de recopier les leçons 150 ou 152 et vraiment axer sur les éléments propres ça en fait une leçon un peu délicate... Surtout la partie "calcul approché d'éléments propres" avec les méthodes numériques comme par exemple la méthode de la puissance qui sont indispensables dans cette leçon et qu'il faut connaître un minimum.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
154 : Exemples de décompositions de matrices. Applications.
-
Leçon :
-
Remarque :
Cette leçon est l'occasion de faire le point sur la réduction de matrices (diagonalisation, trigonalisation, décomposition de Dunford, décomposition de Jordan, décomposition de Frobenius, etc.) ainsi que des générateurs du groupe linéaire. Il n'est pas essentielle de présenter toutes les décompositions de matrices que l'on connaît, mais il est important de noter que si on parle d'une décomposition dans le plan, il faut savoir la faire en pratique : certaines démonstrations sont "algorithmiques" et permettent de savoir faire sur une matrice de petite taille.
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
155 : Exponentielle de matrices. Applications.
-
Leçon :
-
Remarque :
Cette leçon est l'occasion de découvrir/approfondir la notion de rayon spectral et de découvrir pas mal de petites choses et même de bien faire le point (voire de découvrir) l'exponentielle matricielle.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
156 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
-
Leçon :
-
Remarque :
Se pencher un peu sur la réduction de Jordan par les noyaux itérés vaut le coup car c'est un peu la "finalité" de cette théorie. Les démonstrations sont un peu compliquées donc je pense qu'avoir les idées suffit, par contre il faut savoir jordaniser une matrice en pratique !
Attention à la décomposition de Dunford car c'est un développement très (vraiment trop !!) vu donc il vaut mieux trouver autre chose pour se démarquer un peu (d'autant plus que le jury vous attends au tournant à la moindre erreur et sera plus vite lassé étant donné qu'il l'a déjà vu 10 fois avant). De plus, le lemme des noyaux peut se démontrer de plusieurs manières en fonction du résultat (juste la décomposition en somme directe ou en plus des résultats sur les projecteurs) et cela peut donc également poser problème...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Tout-en-un MP/MP*, Claude Deschamps
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Objectif Agrégation, Beck, Malick, Peyré
-
Oraux X-ENS Algèbre 2
, Francinou, Gianella, Nicolas
-
Fichier :
161 : Espaces vectoriels et espaces affines euclidiens : distances, isométries.
-
Leçon :
-
Remarque :
Cette leçon n'est pas la plus évidente à faire... Bosser un peu les isométries laissant globalement invariant le tétraèdre ou le cube peut être un bon investissement à faire : c'est joli et ça aide à comprendre vraiment l'intérêt des actions de groupe. Il faut également savoir classifier une isométrie vectorielle ou affine en dimension 2 ou 3 à partir d'une matrice (cas vectoriel) ou d'un système (cas affine).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Analyse
, Gourdon
-
Algèbre et probabilités, Gourdon
-
Géométrie, Audin
-
Oraux X-ENS Algèbre 3
, Francinou, Gianella, Nicolas
-
Tout-en-un MP/MP*, Claude Deschamps
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Théorie des groupes (bis), Delcourt
-
Cours d'algèbre
, Perrin
-
Algèbre et géométrie
, Combes
-
Nouvelles histoires hédonistes de groupes et géométrie, tome 2, Philippe Caldero et Jérôme Germoni
-
Fichier :
181 : Convexité dans Rn. Applications en algèbre et en géométrie.
-
Leçon :
-
Remarque :
Cette leçon là est très difficile car la convexité dans R^n est peu abordée en CPGE et à la fac et le fait qu'il n'y ait plus "Barycentres" dans l'intitulé de leçon ne laisse pas grand chose de bien intéressant à dire (même le rapport du jury semble ne pas trop savoir quoi dire...). Mes deux développements sont passables mais sans plus car on exploite d'avantage la notion d'isobarycentre et de point extremal pour le second...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
190 : Méthodes combinatoires, problèmes de dénombrement.
-
Leçon :
-
Remarque :
Cette leçon peut se faire de bien des manières différentes. Personnellement, j'ai choisi d'insister sur lalgèbre et plus particulièrement sur la théorie des groupes parce que j'étais plutôt à l'aise, mais on peut parler de probabilités par exemples (les applications ne manquent pas !). En revanche il faut bien s'attendre à avoir des exercices qui nécessitent de faire du dénombrement et donc il faut en faire de temps en temps pour garder en tête des "techniques classiques de dénombrement".
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Tout-en-un MP/MP*, Claude Deschamps
-
Algèbre et géométrie
, Combes
-
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi
-
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier
-
Carnet de voyage en Analystan, Caldero
-
Algèbre et probabilités, Gourdon
-
Exercices de mathématiques pour l'agrégation, algèbre 1, Serge Francinou
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Remarque :
On peut parler de beaucoup de choses et d'espaces dans cette leçon. Il faut faire attention au fait que c'est une leçon sur les espaces de fonctions et non pas sur les fonctions en elles-mêmes. Il faut donc éviter de mettre trop de choses en rapport avec les propriétés des fonctions et plutôt donner des propriétés sur les espaces (densité, compacité, etc.).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
203 : Utilisation de la notion de compacité.
-
Leçon :
-
Remarque :
Attention cette leçon traîte de l'utilisation de la compacité et non de la compacité en elle-même ! Il faut donc donner le plus d'exemples et d'applications possibles et varier au maximum les domaines d'application.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
206 : Exemples d'utilisation de la notion de dimension finie en analyse.
-
Leçon :
-
Remarque :
Il faut montrer dans cette leçon l'importance de la dimension finie dans plusieurs contexte en montrant explicitement ses apports.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
-
Leçon :
-
Remarque :
Le lemme de Baire et ses conséquence n'est pas obligatoire mais c'est un bon investissement à faire pendant l'année. En revanche, parler des espaces de Hilbert semble indispensable sinon la leçon risque d'être trop courte et trop pauvre en résultats.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
209 : Approximation d'une fonction par des fonctions régulières. Exemples d'applications.
-
Leçon :
-
Remarque :
Il faut essayer de motivier l'approximation d'une fonction par des fonctions régulières et donner le plus d'exemples possibles (approximation par des polynômes, dans les L^p ou encore de fonctions périodiques).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
218 : Formules de Taylor. Exemples et applications.
-
Leçon :
-
Remarque :
Dans cette leçon il faut essayer d'illustrer au maximum chaque formule de Taylor dans divers domaines (analyse, probabilités, analyse numérique, etc.).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon permet de réviser pas mal de choses : compacité, convexité, techniques d'optimisation, etc. Elle est également l'occasion de parler de la méthode du gradient si on le désire.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Tout-en-un MP/MP*, Claude Deschamps
-
Objectif Agrégation, Beck, Malick, Peyré
-
Analyse numérique et équation différentielle
, Demailly
-
Mathématiques pour l'agrégation, Analyse et probabilités, Jean-Étienne Rombaldi
-
Analyse
, Gourdon
-
Analyse complexe pour la Licence 3, Tauvel
-
Petit guide de calcul différentiel
, Rouvière
-
Topologie générale et espaces normés
, Hage Hassan
-
Algèbre
, Gourdon
-
Fichier :
223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon paraît facile mais en réalité elle est assez piègeuse ! En effet, comme c'est une leçon niveau première année, le jury peut s'attendre à beaucoup de recul sur ces notions et poser des exos assez avancés... De plus, les notions de limsup et liminf ne sont pas très faciles et assez peu abordées en CPGE et à la fac (il faut d'ailleurs bien travailler les démonstrations sur ce sujet et faire des exercices pour bien comprendre ces deux notions).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Remarque :
Cette leçon est l'une des plus difficiles en analyse, la difficulté provennant du fait que la leçon s'appelle "Exemples de..." et que dans les références, on ne trouve pas beaucoup exemples... De plus, la notion de développement asymptotique n'est plus au programme de CPGE et assez peu étudié à la fac donc il faut tout découvrir sur le sujet dans un laps de temps assez court...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples. Applications à la résolution approchée d'équations.
-
Leçon :
-
Remarque :
Il faut essayer d'illustrer un maximum avec des exemples concrets et des études de suites particulières.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
-
Leçon :
-
Remarque :
La difficulté de cette leçon repose sur les démonstrations des résultats de convexité qui sont assez difficiles (c'est souvent une utilisation futée de l'inégalité des pentes)...
L'étude de la convexité se motive notamment par les inégalités qu'elle produit, et des résultats de passage du local au global. Il faut aussi absolument accompagner cette leçon avec des dessins en annexe pour illustrer les différentes situations.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Remarque :
Pour cette leçon il faut faire pas mal d'exercice afin de se souvenir d'astuces qui peuvent être utiles.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Cette leçon repose sur des notions de première année, donc on peut s'attendre à des questions assez poussées du jury : étude de fonctions spéciales, et surtout exemples et contre-exemples (fonction continue nulle part dérivable, fonction discontinue partout sauf en un point, fonction dérivable de dérivée non continue, etc.).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
235 : Problèmes d'interversion de symboles en analyse.
-
Leçon :
-
Remarque :
Les incontournables sont la convergence uniforme et toutes les interversions qui en découlent, les théorèmes de théorie de la mesure, les théorèmes sur les intégrales à paramètres, etc. Il faut bien accompagner ces théorèmes d'exemples et d'applications. On peut également penser aux interversions de symboles avec la convergence uniforme ou le lemme de Baire.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MP/MP*, Claude Deschamps
-
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel
-
Calcul Intégral
, Faraut
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Analyse
, Gourdon
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Fichier :
236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.
-
Leçon :
-
Remarque :
Il faut mettre des manières classiques de calculer les intégrales (intégration par partie, changement de variable) ainsi que les théorèmes de convergence en pensant à bien les illustrer par des exemples. On peut donner d'autres manières de calculer des intégrales comme par exemple avec les probabilités ou l'analyse complexe.
Donner des calculs approchés d'intégrales paraît indispensable également et il faut faire des exercices afin de retenir des "méthodes classiques".
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.
-
Leçon :
-
Remarque :
Il faut que les théorèmes classiques de continuité, dérivabilité, holomorphie sous l'intégrale apparaissent et soient accompagnés d'exemples. Il est pertinent de développer la convolution, les approximations de l'unité et la transformée de Fourier dans L^1(R). Les probabilités et l'analyse complexe peuvent faire de bonnes applications.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Remarque :
C'est une leçon qui porte essentiellement sur la convergence uniforme, donc il faut bien maîtriser ce sujet. Cependant, il ne faut pas trop laisser de côté les autres modes de convergence (notamment dans les L^p) et on peut mettre aussi des probabilités avec toutes les convergences de variables aléatoires. Enfin il faut sourtout penser à donner des exemples et des contre-exemples.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
-
Leçon :
-
Remarque :
Il faut savoir trouver le rayon de convergence d'une série entière et il faut également savoir comment on obtient l'existence et l'unicité de ce rayon de convergence (lemme d'Abel). Il faut aussi savoir démontrer qu'une série entière converge normalement sur tout compact du disque ouvert de convergence, savoir étudier ce qui se passe sur le cercle d'incertitude dans certains cas... Enfin, il faut aussi faire attention à ne pas dire de bêtises sur les séries entières car cette leçon est surtout d'un niveau de deuxième année donc le jury peut être exigeant.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
244 : Exemples d'études et d'applcations de fonctions usuelles et spéciales.
-
Leçon :
-
Remarque :
Il faut faire attention lorsque l'on parle des fonctions trigonométriques de bien donner un sens logique en sachant comment démontrer les choses (par exemple si on commence la leçon avec les formules trigonométriques du cosinus et du sinus et que l'on dit ensuite que ces fonctions sont dérivables alors il faut faire la démonstration avec ces formules trigonométriques et il ne faut surtout pas dire que c'est une série entière) : c'est cela qui rend la leçon difficile à faire...
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Tout-en-un MPSI, Claude Deschamps
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse
, Gourdon
-
Elements d'analyse réelle
, Rombaldi
-
Mathématiques pour l'agrégation, Analyse et probabilités, Jean-Étienne Rombaldi
-
Tout-en-un MP/MP*, Claude Deschamps
-
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Fichier :
253 : Utilisation de la notion de convexité en analyse.
-
Leçon :
-
Remarque :
La convexité est utile pour établir des inégalités intéressantes et étendre des résultats locaux au global (par exemple sur l'optimisation ou l'analyse complexe). Il faut tenter de donner le plus d'applications possibles dans divers domaines et dire où elle intervient.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
261 : Loi d'une variable aléatoire : caractérisations, exemples, applications.
-
Leçon :
-
Remarque :
Pour cette leçon il faut refaire des exercices de calcul de lois avec une fonction h mesurable positive, avec les fonctions de répartition ou encore les fonctions caractéristiques.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :
264 : Variables aléatoires discrètes. Exemples et applications.
-
Leçon :
-
Remarque :
Dans cette leçon il faut rester au maximum dans le cadre discret, parler de moments (espérance, variance, etc.), de formule du transfert, etc. Il faut connaître les propriétés propres aux variables aléatoires discrètes et savoir utiliser les différentes formules et les inégalités (et ne pas oublier les fonctions génératrices !).
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Probabilités 1
, Ouvrard
-
Tout-en-un MP/MP*, Claude Deschamps
-
Algèbre et probabilités, Gourdon
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy
-
Carnet de voyage en Analystan, Caldero
-
ORAUX X-ENS 6 (nouvelle édition), Francinou, Gianella, Nicolas
-
Fichier :
266 : Utilisation de la notion d'indépendance en probabilités.
-
Leçon :
-
Remarque :
Pour cette leçon il faut centrer les résultats sur l'indépendance mais comme le mentionne le rapport du jury, c'est une leçon sur les applications de l'indépendance : il faut donc en mettre le plus possible et dans des domaines variés si possible. Les vecteurs gaussiens ne sont pas obligatoires mais font une bonne application.
N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
-
Références :
-
Fichier :