Analyse complexe pour la Licence 3

Tauvel

Utilisée dans les 5 développements suivants :

Théorème de Runge (version faible)
Calcul d'une intégrale par le théorème des résidus
Principe du prolongement analytique, analyticité des fonctions holomorphes et formule de Cauchy
Principe de prolongement et applications simples
Illustration du théorème des résidus

Utilisée dans les 19 leçons suivantes :

201 (2025) Espaces de fonctions. Exemples et applications.
219 (2025) Extremums : existence, caractérisation, recherche. Exemples et applications.
236 (2025) Illustrer par des exemples quelques méthodes de calcul d’intégrales de fonctions d’une ou plusieurs variables.
243 (2025) Séries entières, propriétés de la somme. Exemples et applications.
245 (2025) Fonctions holomorphes et méromorphes sur un ouvert de C. Exemples et applications
244 (2024) Exemples d'études et d'applcations de fonctions usuelles et spéciales.
267 (2023) Exemples d’utilisation de courbes en dimension 2 ou supérieure.
207 (2022) Prolongement de fonctions. Exemples et applications.
102 (2025) Groupe des nombres complexes de module 1. Racines de l’unité. Applications.
204 (2025) Connexité. Exemples d’applications.
235 (2025) Problèmes d’interversion de symboles en analyse
253 (2025) Utilisation de la notion de convexité en analyse.
230 (2025) Séries de nombres réels et complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
241 (2025) Suites et séries de fonctions. Exemples et contre-exemples.
215 (2025) Applications différentiables définies sur un ouvert de Rn. Exemples et applications.
203 (2025) Utilisation de la notion de compacité.
218 (2025) Formules de Taylor. Exemples et applications.
239 (2025) Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
234 (2025) Fonctions et espaces de fonctions Lebesgue-intégrables.

Utilisée dans les 6 versions de développements suivants :


Utilisée dans les 95 versions de leçons suivantes :

  • Leçon :
  • Remarque :
    Cette leçon n'est pas des plus faciles à travailler... Du moins selon moi car je ne suis pas très doué en calcul...
    Sinon les choses se trouvent plutôt bien dans le Gourdon pour les méthodes directes, le Briane-Pagès pour les méthodes indirectes (ou le Li Intégration selon les préférences)
    J'ai mis quelques exemples quand même, mais peut-être pas assez... C'est ça aussi la difficulté des leçons "illustrer par des exemples..." ou "exemples de...", c'est qu'on sait qu'on doit mettre des exemples mais pas à quel point...
    Il me semble important de parler un peu de calcul approché. On peut même en parler plus que cela, mais je suis moyennement à l'aise avec l'analyse numérique donc j'ai mis le strict minimum. C'est bien de parler de Monte-Carlo je pense, même si on ne fait pas l'option A, c'est assez facile à comprendre (attention, avec Monte-Carlo, il faut penser à donner un intervalle de confiance !!!)

    En DEV1, j'ai mis l'étude de la fonction Gamma, qui fonctionne, mais je pense qu'on peut mettre à la place l'injectivité de la transformée de Fourier avec le calcul de la TF d'une Gaussienne et la formule d'échange, qui rentrerait peut-être mieux... C'est peut-être ce que j'aurais fait si j'étais tombé dessus le jour J.

    /!\ Après coup, j'ai légèrement modifié mon DEV2, je ne calculais pas cette intégrale mais une intégrale plus sophistiquée : $I=\int\limits_{0}^{+\infty} \frac{t^n}{1+t^{\alpha}}dt$ pour $n>\alpha+1>0$ par la même méthode (avec le théorème des résidus et un bon chemin... Il est dans le Tauvel). Il faut vraiment beaucoup s'entraîner sur un tel développement car c'est beaucoup de calcul et le jour J avec le stress et le temps limité, on peut vite s'embourber.
    Même si on ne fait pas un DEV qui utilise la méthode des résidus dans cette leçon, je conseillerais de bien réviser cette méthode pour cette leçon, je pense que le jury demandera forcément de calculer une intégrale de cette manière... On peut aussi rajouter dans le plan la formule et le théorème de Cauchy que j'ai oubliés !

    Finalement, je n'utilise pas le Queffelec d'analyse complexe dans cette leçon.
  • Références :
  • Fichier :
  • Leçon :
  • Remarque :
    J'ai fait cette leçon en tout début d'année, juste après la 241. Je pense qu'il y a à peu près tout ce qui doit s'y trouver, on peut rajouter des choses sur l'analyticité mais il ne faut pas trop en mettre car il y a une leçon consacrée à cela : la 245.

    /!\ Le DEV 2 : Nombres de Bell rentre très bien dans cette leçon, mais à la fin de l'année, je l'avais remplacé par le théorème de Runge que j'aurais mis dans II-2) par exemple.

    Je suis resté sur des choses assez basiques pour cette leçon, on peut sûrement trouver des résultats plus sophistiqués si on est très à l'aise, notamment des critères pour qu'une fonction soit développable en série entière, ou sur les singularités d'une fonction holomorphe et le rayon maximal des séries entières...

    Il faut bien savoir trouver le rayon de convergence d'une série entière en utilisant l'une des formules (D'Alembert, Cauchy-Hadamard...) et il faut bien savoir comment on obtient l'existence et l'unicité de ce rayon de convergence (lemme d'Abel). Il faut aussi savoir démontrer qu'une série entière converge normalement sur tout compact du disque ouvert de convergence, savoir étudier ce qui se passe sur le cercle d'incertitude dans certains cas...
    Il faut aussi faire attention à ne pas dire de bêtises sur les séries entières, c'est le genre de sujets où on peut en dire facilement. Je conseillerais de bien lire tout le chapitre du El Amrani là-dessus.
  • Références :
  • Fichier :
  • Leçon :
  • Remarque :
    Cette leçon vient compléter la 243, on y met beaucoup plus l'accent sur l'aspect "holomorphe". Je conseillerais d'utiliser plus le Tauvel que le Queffelec-Queffelec, mais c'est selon ses sensibilités.
    J'aurais sûrement dû mettre plus de choses sur le Log complexe, là encore, le Tauvel est mieux là-dessus. Il y a une multitude de versions des théorèmes de Cauchy (triangulaire, convexe, simplement connexe, homologique...) j'ai mis les versions les plus simples, qui suffisaient à établir l'équivalence holomorphe-analytique...

    /!\ J'ai changé mon DEV1 après coup car il était trop court : à la place, j'ai mis le calcul de l'intégrale par la méthode des résidus (voir ma leçon 236), qui se placerait en III-2) dans leçon, et qui deviendrait donc le DEV2...
    Evidemment, les résultats de mon ex-DEV1 doivent obligatoirement figurer dans la leçon, et c'est bien de connaître les déomonstrations.

    La partie sur les produits infinis n'est pas obligatoire, mais je pense que c'est pas mal de mentionner le théorème de Weierstrass sur la convergence dans $\mathcal{H}(\Omega)$, et de dire à quel point il est puissant : il suffit d'avoir la convergence uniforme sur tout compact pour que la limite soit holomorphe et en plus, toutes les dérivées convergent uniformément sur tout compact vers les dérivées de la limite ! On pouvait aussi parler de la topologie de cet espace, avec le théorème de Montel et le fait que la topologie de la convergence uniforme sur les compacts est métrisable mais pas normable (voir mes leçons 201 et 203, c'est un résultat assez avancé).
    C'est une leçon très très vaste, on pourrait mettre plein d'autres choses... Je pense que pour cette leçon, faire des exercices est indispensable car ils peuvent être vite difficiles.
  • Références :
  • Fichier :