Analyse complexe pour la Licence 3

Tauvel

Utilisée dans les 3 développements suivants :

Théorème de Runge (version faible)
Calcul d'une intégrale par le théorème des résidus
Principe du prolongement analytique, analyticité des fonctions holomorphes et formule de Cauchy

Utilisée dans les 16 leçons suivantes :

201 (2024) Espaces de fonctions. Exemples et applications.
219 (2024) Extremums : existence, caractérisation, recherche. Exemples et applications.
236 (2024) Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.
243 (2024) Séries entières, propriétés de la somme. Exemples et applications.
245 (2024) Fonctions holomorphes et méromorphes sur un ouvert de C. Exemples et applcations.
244 (2024) Exemples d'études et d'applcations de fonctions usuelles et spéciales.
267 (2023) Exemples d’utilisation de courbes en dimension 2 ou supérieure.
207 (2022) Prolongement de fonctions. Exemples et applications.
102 (2024) Groupe des nombres complexes de module 1. Racines de l'unité. Applications.
204 (2024) Connexité. Exemples d'applications.
235 (2024) Problèmes d'interversion de symboles en analyse.
253 (2024) Utilisation de la notion de convexité en analyse.
230 (2024) Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
241 (2024) Suites et séries de fonctions. Exemples et contre-exemples.
215 (2024) Applications différentiables définies sur un ouvert de Rn. Exemples et applications.
203 (2024) Utilisation de la notion de compacité.

Utilisée dans les 3 versions de développements suivants :


Utilisée dans les 54 versions de leçons suivantes :