Leçon 267 : Exemples d’utilisation de courbes en dimension 2 ou supérieure.

(2022) 267

Dernier rapport du Jury :

(2022 : 267 - Exemples d'utilisation de courbes en dimension 2 ou supérieure.) Cette leçon de synthèse a pour objectif de mettre en évidence la variété et la richesse des interventions et des utilisations des courbes en mathématiques. Le programme fournit au candidat de multiples angles d'attaque pour aborder cette leçon : géométrie (arcs paramétrés, études métriques, etc.), topologie (connexité par arcs), calcul différentiel (lien entre les différentes définitions d'une courbe, courbes définies comme intersection de deux surfaces, espace tangent), équations différentielles (tracé de trajectoires d'un système différentiel autonome plan), analyse complexe (intégrale curviligne, indice, théorème des résidus, etc.). Les candidats solides pourront s'intéresser à l'homotopie, à la simple connexité, au théorème de Jordan, aux problèmes isopérimétriques, à la méthode du col en analyse asymptotique, à des exemples de courbes de Peano ou fractales.

(2020 : 267 - Exemples d’utilisation de courbes en dimension 2 ou supérieure.) Cette leçon de synthèse doit permettre de montrer la variété d’utilisation des courbes dans le plan (ou, dans une perspective plus ambitieuse, de courbes tracées sur un objet géométrique plus élaboré), que celles-ci soient définies sous une forme paramétrique ou une sous forme implicite. Plutôt qu’une théorie générale ou un catalogue de formules relatives à divers systèmes de coordonnées qui seraient donnés sans motivation, le jury attend plutôt une illustration des applications des courbes planes en topologie, en calcul différentiel, en géométrie ou en analyse complexe à partir d’exemples et de résultats pertinents. Il s’agit d’un sujet suffisamment riche qui permet d’aborder des points de géométrie intéressants tout en restant à un niveau mathématique raisonnable. Cette leçon doit présenter différents aspects de l’utilisation des courbes : on ne pourra se contenter d’un seul. La liste qui suit, qui n’est pas exhaustive, présente plusieurs pistes. $\\$ Les propriétés métriques des courbes planes (longueur d’arc, voire courbure) font naturellement partie de cette leçon. Un axe de cette leçon pourrait concerner l’obtention du tracé des courbes et l’étude de mouvements ponctuels dans le plan, qu’ils soient donnés sous forme de lieux (coniques, cycloïdes diverses, etc) ou de solutions d’équations différentielles (par exemple inspirés de problème de mécanique du point, comme le mouvement à deux corps et les lois de Kepler). On peut également penser à l’utilisation d’intégrales premières en vue de l’analyse des solutions de systèmes d’équations différentielles ordinaires (périodicité du mouvement d’un pendule pesant, de solutions du système de Lotka–Volterra, méthode des caractéristiques pour la résolution d’équations de transport, etc.). Il est important que les exemples de tracés de courbes soient motivés. $\\$ L’application des courbes planes à la topologie est un point qui peut illustrer naturellement cette leçon : le concept de connexité par arcs, le théorème du relèvement ainsi que la notion d’indice d’un lacet par rapport à un point en lien avec le théorème intégral de Cauchy en analyse complexe... sont des sujets d’investigation pertinents pour cette leçon. Pour aller plus loin, cette leçon peut être l’occasion de s’attarder sur ces techniques d’analyse complexe ainsi que sur les divers résultats qui y sont liés comme par exemple, la formule des résidus, l’existence d’une primitive complexe,voire la méthode du col pour l’obtention de développements asymptotiques, l’étude de certaines transformations conformes (comme la transformation de Joukovski) et leurs applications... Pour les candidats qui le souhaitent, il est enfin possible de développer quelques aspects de géométrie des surfaces en parlant par exemple de vecteurs tangents, de géodésiques sur la sphère ou encore d’extrema liés.

Plans/remarques :

2023 : Leçon 267 - Exemples d’utilisation de courbes en dimension 2 ou supérieure.

  • Auteur :
  • Remarque :
    Voici mes plans de leçons que j'ai réalisé en format complet.
    Si cela peut aider des gens, avec plaisir !
    Tout mes plans de leçons sont inspirés majoritairement de Jouaucon, Marvin et abarrier ( Merci à eux ! ).
    Les références sont à la fin.
    Plan présenté à l'oral de l'agrégation à exception que j'ai remplacer le développement de Gershgörin-Hadamrd par le calcul des fonctions caractéristiques de la loi normal et Cauchy.
    Attention aux éventuels coquilles.
  • Fichier :
  • Auteur :
  • Remarque :
    Possibilité d'avoir ma version complète manuscrite en me contactant par mail.
  • Fichier :

2022 : Leçon 267 - Exemples d'utilisation de courbes en dimension 2 ou supérieure.

  • Auteur :
  • Remarque :
    N'importe quel développement utilisant le théorème des résidus ou ses variantes (par exemple l'intégrale du sinus cardinal) peut remplacer le premier développement.
    La tricolorabilité peut constituer un second développement plus accessible que le théorème de Milnor.
    Un développement sur l'inégalité isopérimétrique pourrait également être utilisé dans ce plan.
  • Fichier :

2020 : Leçon 267 - Exemples d’utilisation de courbes en dimension 2 ou supérieure.

  • Auteur :
  • Remarque :
    Une des dernières leçons que j'ai préparées. La partie analyse complexe et éventuellement la géométrie différentielle avec la définition de l'espace tangent ne sont probablement pas trop mal, mais je vous déconseille de copier mon plan qui à mon avis n'est pas terrible.

    Toutes les références sont à la fin du plan.

    Mes excuses pour l'écriture, et attention aux coquilles...
  • Fichier :

Retours d'oraux :

Pas de retours pour cette leçon.

Références utilisées dans les versions de cette leçon :

Géométrie, Audin (utilisée dans 32 versions au total)
Équations différentielles, Florent Berthelin (utilisée dans 58 versions au total)
Analyse complexe pour la Licence 3, Tauvel (utilisée dans 101 versions au total)
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis (utilisée dans 150 versions au total)
Analyse de Fourier dans les espaces fonctionnels, Mohammed El Amrani (utilisée dans 106 versions au total)
Introduction aux variétés différentielles , Lafontaine (utilisée dans 18 versions au total)
Cours de mathématiques, Tome 3, Géométrie et cinématique, Lelong-Ferrand, Arnaudiès (utilisée dans 1 versions au total)
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron (utilisée dans 75 versions au total)
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel (utilisée dans 37 versions au total)
Fourier Analysis, Stein, Shakarchi (utilisée dans 7 versions au total)
Analyse , Gourdon (utilisée dans 567 versions au total)
Topologie , Queffelec (utilisée dans 32 versions au total)
Nouvelles histoires hédonistes de groupes et géométries, P. Caldero, J. Germoni (utilisée dans 52 versions au total)
Oraux X-ENS Algèbre 2 , Francinou, Gianella, Nicolas (utilisée dans 69 versions au total)
Analyse numérique des EDP , DiMenza (utilisée dans 4 versions au total)
Calcul différentiel, Avez (utilisée dans 21 versions au total)
Oraux X-ENS Analyse 4 , Francinou, Gianella, Nicolas (utilisée dans 57 versions au total)