Dans ce développement, on étudie qualitativement les solutions maximales d'un système différentiel non linéaire. On prédit notamment l'allure ainsi que son caractère périodique.
La preuve utilise une intégrale première, afin de parler de monotonie de fonctions dérivables et de courbes, permettant de mettre ce développement dans les leçons 229 et 267.
Démonstration du livre "équations différentielles" de Florent Berthelin à ma sauce.
Le développement est moins long qu'il n'y parait, plusieurs arguments peuvent peut-être être évoqués à l'oral. S'il vous reste du temps vous pouvez calculer la dérivée de $H$ le long d'une solution pour montrer que c'est bien une intégrale première (Berthelin explique comment faire).
Je dessine plusieurs fois le quart de plan $(\mathbb{R}^*_+)^2$ pour expliquer ce qu'on fait: il est très important que vous dessiniez vous aussi ce qu'on démontre sur un même graphe tout au long du développement!!
(... et encore une fois cf le document d'Ewna qui l'a mieux fait, merci à lui)
Page 204 (mes arguments sont un peu différents et un peu plus détaillés)
Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
Développement long. J'ai écrit beaucoup de détail pour que le lecteur comprenne bien ce qu'il se passe, mais il y a des moment où on peut se passer d'écrire (comme le calcul de $\frac{d}{dt}H$ ou les arguments à la fin). Je conseille de faire quelques dessins, et de ne pas hésiter à les manipuler.
Je me suis un peu éloignée de ce qui est fait dans le FGN, notamment au moment de prouver que $I=\mathbb R$, car c'est trop long dans le FGN alors qu'une autre preuve tient en trois mots dès qu'on a le caractère borné de la solution maximale : lemme des bouts.
Dans tout le développement, il y a deux arguments de monotonie (monotone borné donc convergeant et monotone donc injectif), cela me semble un peu léger pour justifier les 5 étoiles dans la leçon 229.
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.