Introduction aux variétés différentielles

Lafontaine

Utilisée dans les 4 développements suivants :

Théorème d'inversion locale
Extrema liés
Espace tangent et extrema liés
Théorème des extrema liés (par les sous-variétés)

Utilisée dans les 4 leçons suivantes :

214 (2025) Théorème d’inversion locale, théorème des fonctions implicites. Illustrations en analyse et en géométrie.
215 (2025) Applications différentiables définies sur un ouvert de Rn. Exemples et applications.
267 (2023) Exemples d’utilisation de courbes en dimension 2 ou supérieure.
159 (2025) Formes linéaires et dualité en dimension finie. Exemples et applications.

Utilisée dans les 4 versions de développements suivants :


Utilisée dans les 14 versions de leçons suivantes :

  • Leçon :
  • Remarque :
    J'aime beaucoup cette leçon. J'aurais peut-être dû ne pas faire de schéma du folium pour gagner de la place pour les autres schémas. Il faut être au point sur les preuves usuelles de la leçon (dont inversion locale !). Il aurait été bon que je mette plus d'exemples "pratiques" ou plus développés mais... j'avais besoin de place pour bien traiter la géo diff.
    Petits typos :
    -dans l'ex2, il faut préciser que les intervalles sont ouverts, et je ne parle pas d'un cercle mais d'un disque
    -dans mes propriétés 29 et 30, il est plus juste d'écrire "Localement, à difféomorphisme près" ou "A difféomorphismes locaux près" : il n'y a pas unicité du difféo...

    A propos des refs, Lafontaine traite très bien la géodiff et l'inversion locale. Objectif Agrégation est une perle pour les applications et les schémas. Rouvière est très bien pour les exemples et applications, mais je n'aime vraiment pas son formalisme dans le cours (il se perd dans des formulations analytiques au lieu de parler d'injectivité/surjectivité des différentielles...).

    En bref, une leçon très plaisante, où l'on a énormément de choses à dire - il ne faut pas trainer le jour J.
  • Références :
  • Fichier :
  • Leçon :
  • Remarque :
    Ah la la cette leçon ! C'est une impasse pour beaucoup de gens (ce que je comprends), mais grâce à une bonne amie, j'ai pu avoir les outils pour la travailler et je me suis lancé pour la faire et la présenter en classe. Elle demande pas mal de travail, et honnêtement je ne sais pas si c'est un si bon investissement que ça mais personnellement elle m'a beaucoup plu.
    Il faut savoir démontrer les 2 théorèmes du titre de la leçon (au moins l'un des deux et avoir une idée de comment en déduire l'autre) et surtout faire plein d'exercices d'application plus ou moins "futée" de ces théorèmes. On trouve de belles applications du TFI dans le Beck (EX29 et EX30).
    Après, il y a la partie difficile : les sous-variétés... Le Lafontaine les traite, mais de là à dire qu'il les traite d'une façon parfaitement claire... C'est autre chose... Dans notre prépa agreg, on a demandé à un prof de nous faire un mini-cours sur les sous-variétés. Dans le fond, il n'y a pas grand chose à savoir mais ça reste difficile : la définition d'une sous-variété accompagnée du schéma, et toutes les caractérisations (par une équation implicite, par un paramétrage, par un graphe), et enfin la notion d'espace tangent. Il faut connaître chaque caractérisation de l'espace tangent correspondant à la caractérisation de la sous-variété, et surtout faire des exemples ! Trouver l'espace tangent en un point à la sphère, à $\text{SL}_n(\mathbb{R})$, à $O_n(\mathbb{R})$... Et ça suffit, pas besoin d'aller vers la géométrie différentielle dans le cadre général (pas besoin de parler de cartes, d'atlas ou je ne sais quoi...)
    Dans l'optique de travailler toutes ces notions, je conseille d'essayer de faire en développement le théorème des extrema liés (voir ma version du DEV). Le seul problème, c'est qu'il n'y a pas de référence à proprement parler pour ce développement, à part le Avez Calcul Différentiel mais c'est un vieux livre de calcul diff franchement pas très digeste...
    Pour finir, si j'étais tombé dessus le jour J, je n'aurais certainement pas mis EX33, THM52 et EX57 (je fais l'inégalité de Hadamard autrement).
  • Références :
  • Fichier :
  • Leçon :
  • Remarque :
    Cette leçon demande par mal d'investissement car le calcul différentiel n'est plus très privilégié alors il est rare d'avoir un bon cours qui traite très bien le théorème d'inversion locale et le théorème des fonctions implicites et qui donne des exemples d'applications ! Il faut savoir démontrer les 2 théorèmes du titre de la leçon (au moins l'un des deux et avoir une idée de comment en déduire l'autre) et surtout faire pas mal d'exercices d'application de ces théorèmes afin de mieux les retenir.
    Après, il y a les sous-variétés... Cette notion est encore moins traitée que le calcul différentiel alors elle demande encore plus d'investissement... Dans le fond, il n'y a pas grand chose à savoir (définition d'une sous-variété accompagnée du schéma, caractérisations (par une équation implicite, par un paramétrage, par un graphe), et enfin la notion d'espace tangent) mais ça reste difficile lorsqu'on en a jamais fait. Il faut également connaître chaque caractérisation de l'espace tangent correspondant à la caractérisation de la sous-variété, et surtout faire des exemples et trouver des espaces tangents en un point dans des espaces de matrices par exemple. Inutile ensuite d'aller plus loin vers la géométrie différentielle dans le cadre général (pas besoin de parler de cartes ou d'atlas !) car le jury sait que cette leçon est difficile pour les candidats alors il ne demande pas un niveau de maîtrise excellent.

    N'hésitez pas à me contacter si vous constatez ce qui semble être une erreur (typographie, mathématique, etc).
  • Références :
  • Fichier :