Utilisés dans les 1 versions de développements suivants :
Théorème de Fejer
-
Développement :
-
Référence :
-
Fichier :
Utilisés dans les 55 versions de leçons suivantes :
102 : Groupe des nombres complexes de module 1. Sous-groupes des racines de l’unité. Applications.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications
-
Leçon :
-
Références :
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Analyse
, Gourdon
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse fonctionelle
, Brézis
-
Théorie des distributions
, Bony
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse numérique et équation différentielle
, Demailly
-
Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Allaire
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Elements d'analyse fonctionnelle
, Hirsch
-
Analyse numérique et équation différentielle
, Demailly
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Objectif Agrégation, Beck, Malick, Peyré
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Références :
-
Fichier :
235 : Problèmes d’interversion de limites et d’intégrales.
-
Leçon :
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d’un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Objectif Agrégation, Beck, Malick, Peyré
-
Probabilités, Barbe-Ledoux
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Références :
-
Fichier :
246 : Séries de Fourier. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
Leçon assez difficile par sa simplicité ...
J'ai, au cours de l'année, remplacé la troisième partie par l'exemple remarquable des suites récurrentes, afin de renforcer le côté "exemple", et en même temps applications puisqu'on utilise beaucoup les suites récurrentes pour la résolution d'équations notamment.
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Petit guide de calcul différentiel
, Rouvière
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Analyse
, Gourdon
-
Analyse numérique, Une approche mathématique, Michelle Schatzman
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Fichier :
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
222 : Exemples d'études d'équations différentielles linéaires et d'équations aux dérivées partielles linéaires.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[Ber] Équations différentielles : Florent Berthelin
[Li] Cours d'analyse fonctionnelle : Daniel Li
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Rom] Elements d'analyse réelle : Rombaldi
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[Ouv2] Probabilités 2 : Ouvrard
[GouAn] Analyse : Gourdon
[FGN An2] Oraux X-ENS Analyse 2 : Francinou, Gianella, Nicolas
[Ber] Analyse pour l'agrégation de mathématiques, 40 développements : Julien Bernis et Laurent Bernis
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Elements d'analyse réelle
, Rombaldi
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Probabilités 2
, Ouvrard
-
Analyse
, Gourdon
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Rom] Elements d'analyse réelle : Rombaldi
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Les] 131 Développements pour l’oral : D. Lesesvre
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
-
Références :
-
Elements d'analyse réelle
, Rombaldi
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Cours d'analyse fonctionnelle, Daniel Li
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Fichier :
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[FGN An2] Oraux X-ENS Analyse 2 : Francinou, Gianella, Nicolas
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[Les] 131 Développements pour l’oral : D. Lesesvre
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Fichier :
235 : Problèmes d’interversion de limites et d’intégrales.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[OA] Objectif Agrégation : Beck, Malick, Peyré
[Li] Cours d'analyse fonctionnelle : Daniel Li
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Objectif Agrégation, Beck, Malick, Peyré
-
Cours d'analyse fonctionnelle, Daniel Li
-
Fichier :
236 : Illustrer par des exemples quelques méthodes de calcul d’intégrales de fonctions d’une ou plusieurs variables.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[GouAn] Analyse : Gourdon
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
[Tau] Analyse complexe pour la Licence 3 : Tauvel
[Les] 131 Développements pour l’oral : D. Lesesvre
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
-
Références :
-
Analyse
, Gourdon
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Analyse complexe pour la Licence 3, Tauvel
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[Bri] Analyse. Théorie de l'intégration : Briane, Pagès
[OA] Objectif Agrégation : Beck, Malick, Peyré
[Li] Cours d'analyse fonctionnelle : Daniel Li
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[Les] 131 Développements pour l’oral : D. Lesesvre
-
Références :
-
Analyse. Théorie de l'intégration, Briane, Pagès
-
Objectif Agrégation, Beck, Malick, Peyré
-
Cours d'analyse fonctionnelle, Daniel Li
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Remarque :
Plan très fortement inspiré du plan de M. Cacitti-Holland: http://perso.eleves.ens-rennes.fr/~dcaci409/Agregation.html#lecons
Références en fin de plan avec les notations:
[ElAm] Suites et séries numériques, suites et séries de fonctions : El Amrani
[NR] No Reference :(
[Isen] L'oral à l'agrégation de mathématiques - Une sélection de développements : Isenmann
[Les] 131 Développements pour l’oral : D. Lesesvre
[ZQ] Analyse pour l'agrégation : Queffelec, Zuily
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1 = f(un). Exemples. Applications à la résolution approchée d’équations.
-
Leçon :
-
Références :
-
Fichier :
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Références :
-
Fichier :
235 : Problèmes d’interversion de limites et d’intégrales.
-
Leçon :
-
Références :
-
Fichier :
239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Références :
-
Les contre-exemples en mathématiques
, Hauchecorne
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Objectif Agrégation, Beck, Malick, Peyré
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Analyse
, Gourdon
-
Exercices pour l'agrégation - Analyse 1
, Chambert-Loir
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
-
Leçon :
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Cours de mathématiques, Tome 3 : Compléments d'analyse, Arnaudiès, Fraysse
-
Oraux X-ENS Analyse 1
, Francinou, Gianella, Nicolas
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Analyse
, Gourdon
-
Cours d'analyse
, Pommelet
-
Elements d'analyse réelle
, Rombaldi
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
246 : Séries de Fourier. Exemples et applications.
-
Leçon :
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Cours de mathématiques, Tome 3 : Compléments d'analyse, Arnaudiès, Fraysse
-
Objectif Agrégation, Beck, Malick, Peyré
-
Exercices pour l'agrégation - Analyse 1
, Chambert-Loir
-
Exercices pour l'agrégation - Analyse 2
, Chambert-Loir
-
Analyse
, Gourdon
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Fichier :
235 : Problèmes d’interversion de limites et d’intégrales.
-
Leçon :
-
Références :
-
Fichier :
201 : Espaces de fonctions. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Références :
-
Analyse
, Gourdon
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Fichier :
235 : Problèmes d’interversion en analyse.
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Petit guide de calcul différentiel , François Rouvière
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
-
Leçon :
-
Références :
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis
-
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas
-
Probabilités et statistiques pour l'épreuvre de modélisation à l'agrégation de mathématiques, Chabanol, Ruch
-
Analyse complexe pour la Licence 3, Tauvel
-
Analyse
, Gourdon
-
Fichier :
209 : Approximation d’une fonction par des fonctions régulières. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Référence :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Référence :
-
Fichier :
226 : Suites vectorielles et réelles définies par une relation de récurrence un+1 = f(un). Exemples. Applications à la résolution approchée d’équations.
228 : Continuité, dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
235 : Problèmes d’interversion en analyse.
-
Leçon :
-
Références :
-
Fichier :
236 : Illustrer par des exemples quelques méthodes de calcul d’intégrales de fonctions d’une ou plusieurs variables.
-
Leçon :
-
Références :
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
-
Leçon :
-
Références :
-
Fichier :
235 : Problèmes d’interversion en analyse.
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Références :
-
Fichier :
243 : Séries entières, propriétés de la somme. Exemples et applications.
241 : Suites et séries de fonctions. Exemples et contre-exemples.
-
Leçon :
-
Remarque :
Plan réalisé pour un oral blanc de milieu d'année. J'aime beaucoup sa structure, avec de nombreux exemples (le Hauchecorne vous sauvera), et surtout la dernière partie « Les séries entières au service du dénombrement » (même si ce sont plutôt des séries formelles) qui illustre ce que le jury attend dans la construction d'un plan, à mon humble avis.
-
Références :
-
Fichier :
206 : Exemples d’utilisation de la notion de dimension finie en analyse
223 : Suites numériques. Convergence, valeurs d’adhérence. Exemples et applications.
-
Leçon :
-
Références :
-
Fichier :
224 : Exemples de développements asymptotiques de suites et de fonctions.
-
Leçon :
-
Références :
-
Fichier :
246 : Séries de Fourier. Exemples et applications.
-
Leçon :
-
Références :
-
Analyse pour l'agrégation, Queffelec, Zuily
-
Suites et séries numériques, suites et séries de fonctions, El Amrani
-
Analyse
, Gourdon
-
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte
-
131 Développements pour l’oral, D. Lesesvre, P. Montagnon, P. Le Barbenchon, T. Pierron
-
Fichier :