246 : Séries de Fourier. Exemples et applications.

Pandou

3 mai 2022

1 Premières définitions

1.1 Polynômes trigonométriques

Définition 1. On note $e_n: t \in \mathbb{R} \longmapsto e^{int}$, $C_{2\pi}^0(\mathbb{R}, \mathbb{C})$ l'espace des fonctions continues 2π -périodiques sur \mathbb{R} , sur lequel on définit le produit scalaire

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$$

Proposition 2. La famille $(e_n)_{n\in\mathbb{Z}}$ est orthonormée dans $C_{2\pi}^0(\mathbb{R},\mathbb{C})$.

Corollaire 3. La famille $(1, \cos(nt), \sin(nt))_{n \ge 1}$ est orthogonale dans $C^0_{2\pi}(\mathbb{R}, \mathbb{C})$.

Définition 4. Un polynôme trigonométrique de degré N est un élément de $\text{Vect}(e_n)_{-N\leqslant n\leqslant N}$. Les coefficients c_n de $\sum_{n=-N}^N c_n e_n$ sont alors appelés coefficients exponentiels de P.

Remarque 5: Tout polynôme trigonométrique peut s'écrire sous sa forme réelle : $\frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos(nt) + b_n \sin(nt) \right)$. Les coefficients (a_n) et (b_n) sont appelés coefficients trigonométriques de P.

Proposition 6. En gardant les notations précédentes, on a

$$||P||_2^2 = \sum_{n=-N}^N |c_n|^2 = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^N (|a_n|^2 + |b_n|^2)$$

1.2 Séries trigonométriques

Définition 7. Une série trigonométrique est une série de fonctions de la forme $c_0 + \sum_{n\geqslant 1} \left(c_n e^{inx} + c_{-n} e^{-inx}\right)$ que l'on écrira plutôt $\sum_{n\in\mathbb{Z}} c_n e^{inx}$.

Remarque 8 : En particulier, la convergence d'une série trigonométrique revient à la convergence de la suite $\left(\sum_{n=-N}^{N} c_n e^{inx}\right)_{N\in\mathbb{N}}$ et on notera alors

$$\lim_{N \to +\infty} \sum_{n=-N}^{N} c_n e^{inx} = \sum_{n=-\infty}^{+\infty} c_n e^{inx}$$

En particulier, on peut avoir convergence sans que la famille $(c_n e^{inx})_{n \in \mathbb{Z}}$ soit sommable.

Remarque 9 : On peut aussi définir une série trigonométrique de la forme $\frac{a_0}{2} + \sum_{n\geqslant 1} (a_n \cos(nx) + b_n \sin(nx)).$

Proposition 10. En gardant les notations précédentes, si $\sum_{n\in\mathbb{N}}|c_n|$ et $\sum_{n\in\mathbb{N}}|c_{-n}|$

(resp. $\sum_{n\in\mathbb{N}} |a_n|$ et $\sum_{n\in\mathbb{N}} |b_n|$) convergent, alors les séries trigonométriques associées convergent normalement sur \mathbb{R} .

En particulier, ces séries trigonométriques définissent des fonctions continues et 2π -périodiques.

Proposition 11. Soit (a_n) et (b_n) deux suites décroissantes de réels positifs tendant

vers 0, alors les séries trigonométriques $\sum a_n \cos(nt)$ et $\sum b_n \sin(nt)$ convergent uniformément sur tout segment de $\mathbb{R} \setminus 2\pi\mathbb{Z}$.

1.3 Séries de Fourier

Définition 12. Soit f est continue par morceaux et 2π -périodique, on appelle coefficients de Fourier les complexes

$$\forall n \in \mathbb{Z}, c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt = \langle f, e_n \rangle$$

La série de Fourier de f est la série trigonométrique $\sum_{n\in\mathbb{Z}}c_ne^{int}$. On note $S_N(f)=$

$$\sum_{n=-N}^{N} c_n(f)e_n.$$

Remarque 13 : On définit de même des coefficients de Fourier "réels" via

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$
 et $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$

On a les relations suivantes :

$$\begin{cases}
a_n = c_n + c_{-n}(f) \\
b_n = i(c_n - c_{-n})
\end{cases}
\iff
\begin{cases}
c_n = \frac{a_n - ib_n}{2} \\
c_{-n} = \frac{a_n + ib_n}{2}
\end{cases}$$

Remarque 14 : Le N-ième polynôme trigonométrique associé à la série de Fourier de f est la meilleure approximation de f dans $\text{Vect}(e_n)_{-N \leq n \leq N}$.

Remarque 15: Si f est T-périodique et continue en général, on a toujours des coefficients de Fourier définis par $c_n = \frac{1}{T} \int_0^T f(x) e^{-\frac{2i\pi nx}{T}} dx$.

Proposition 16. Soit f continue par morceaux et 2π -périodique, alors :

- 1. $Si \ \hat{f}(x) = f(-x), \ alors, \ c_n(\hat{f}) = c_{-n}(f).$
- 2. $c_n(\overline{f}) = \overline{c_{-n}(f)}$.
- 3. Si $\tau_a f(x) = f(x-a)$, alors $c_n(\tau_a f) = e^{-ina} c_n(f)$
- $4. c_n(e_k f) = c_{n-k}(f)e_n.$

5. Si f est continue et C^1 par morceaux, alors $c_n(f') = inc_n(f)$.

Théorème 17. Si f est somme d'une série trigonométrique $\sum_{n\in\mathbb{Z}} c_n e_n$ qui converge uniformément, alors $c_n(f) = c_n$.

Théorème 18 (Inégalité de Bessel). Soit f continue par morceaux et 2π -périodique, alors

$$\sum_{n=-N}^{N} |c_n(f)|^2 \leqslant ||f||_2^2$$

Théorème 19 (Lemme de Riemann-Lebesgue). Soit f continue par morceaux et 2π -périodique, alors

$$c_n(f) \underset{|n| \to +\infty}{\longrightarrow} 0$$

Corollaire 20. Si f est C^{k-1} et C^k par morceaux, 2π -périodique, alors $c_n(f) = o\left(\frac{1}{|n|^k}\right)$.

Définition 21. Soit f une fonction continue par morceaux, on dit qu'elle vérifie la condition de Dirichlet si

$$\forall t \in \mathbb{R}, f(t) = \frac{f(t^+) + f(t^-)}{2}$$

On notera $\mathcal{D}_{2\pi}$ l'espace des fonctions continues par morceaux, 2π -périodiques qui vérifient la condition de Dirichlet.

Remarque 22 : En munissant $\mathcal{D}_{2\pi}$ du même produit scalaire que celui sur $\mathcal{C}^0_{2\pi}(\mathbb{R},\mathbb{C})$, on définit alors un espace préhilbertien.

Théorème 23. Soit $f \in \mathcal{D}_{2\pi}$, alors si $\forall n \in \mathbb{Z}, c_n = 0$, alors f = 0.

2 Modes de convergence

2.1 Produit de convolution et convergence en moyenne quadratique

Définition 24. Soit f et g deux fonctions intégrables, alors on définit presque partout une fonction f * g par

$$f * g(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x - t)g(t)dt$$

Proposition 25. Le produit de convolution est commutatif et associatif. De plus, on a

$$c_n(f * g) = c_n(f)c_n(g)$$

Théorème 26 (Formule de Parseval). Soit f continue par morceaux, 2π -périodique, alors

$$\sum_{n \in \mathbb{Z}} |c_n(f)|^2 = ||f||_2^2$$

Corollaire 27. Soit $f \in \mathcal{D}_{2\pi}$, alors $S_N(f)$ converge vers f pour la norme L^2 . En particulier, on en déduit que la famille $(e_n)_{n\in\mathbb{Z}}$ est une famille totale de $\mathcal{D}_{2\pi}$.

2.2 Noyau de Dirichlet et théorème de Dirichlet

Définition 28. Soit $N \in \mathbb{N}$, on définit

1.
$$D_N = \sum_{n=-N}^{N} e_n$$
 le noyau de Dirichlet.

2.
$$K_N = \frac{1}{N} \sum_{k=0}^{N-1} D_k$$
 le noyau de Féjer.

Proposition 29. Le noyau de Dirichlet D_N vérifie :

1.
$$D_N$$
 est paire et $\frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t) dt = 1$.

2.
$$D_N(x) = \frac{\sin\left(\frac{N+\frac{1}{2}}{x}\right)}{\sin\frac{x}{2}}$$
.

3. Si f est continue par morceaux et 2π -périodique, alors $S_N(f) = f * D_N$.

Théorème 30 (Dirichlet). Soit $f \in \mathcal{D}_{2\pi}$ qui est \mathcal{C}^1 par morceaux, alors $S_N(f)$ converge simplement vers f sur \mathbb{R} .

2.3 Noyau de Féjer et théorème de Féjer

Proposition 31. Le noyau de Féjer K_N vérifie :

1.
$$K_N = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) e_n$$
.

2.
$$K_N(x) = \frac{1}{N} \left[\frac{\sin \frac{Nx}{2}}{\sin \frac{x}{2}} \right]^2$$
.

3.
$$||K_N||_1 = 1$$
.

4. Si
$$\sigma_N(f) = \frac{1}{N} \sum_{k=0}^{N-1} S_k(f)$$
, alors $\sigma_N(f) = f * K_N$.

Théorème 32 (Féjer). Si $f \in \mathcal{C}^0_{2\pi}(\mathbb{R}, \mathbb{C})$, alors $\sigma_N(f)$ converge uniformément vers f sur \mathbb{R} .

Corollaire 33 (Weierstrass trigonométrique). Toute fonction continue et périodique est limite uniforme d'une suite de polynômes trigonométriques.

3 Applications

3.1 Calculs de sommes

Exemple 34 : Soit $f: x \in [-\pi, \pi] \longmapsto 1 - \frac{x^2}{\pi^2}$ prolongée par 2π -périodicité. Alors, on obtient

$$\sum_{n\geqslant 1} \frac{1}{n^2} = \frac{\pi^2}{6}, \qquad \sum_{n\geqslant 1} \frac{1}{(2n-1^2)} = \frac{\pi^2}{8} \qquad \text{et} \qquad \sum_{n\geqslant 1} \frac{1}{n^4} = \frac{\pi^4}{90}$$

Définition 35. Soit $f \in L^1(\mathbb{R})$, on définit sa transformée de Fourier par

$$\mathcal{F}(f): \xi \longmapsto \int_{\mathbb{R}} f(t)e^{-2i\pi\xi t} dt$$

Théorème 36 (Formule de Poisson). Soit f continue et intégrable, on suppose qu'il existe M>0, $\alpha>1$ tel que $\forall x\in\mathbb{R}, \left|f(x)\right|\leqslant M\big(1+|x|\big)^{-\alpha}$ et tel que $\sum_{n\in\mathbb{Z}}\mathcal{F}(f)(n)$ converge. Alors,

$$\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \mathcal{F}(f)(n)$$

Application 37: $\sum_{n \in \mathbb{Z}} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \operatorname{cotanh}(a\pi).$

Application 38:

$$\forall s > 0, \sum_{n \in \mathbb{Z}} e^{-\pi n^2 s} = \frac{1}{\sqrt{s}} \sum_{n \in \mathbb{Z}} e^{-\frac{\pi n^2}{s}}$$

3.2 Reconstitution de signal

3.2 Reconstitution de signal

Théorème 39 (Échantillonnage de Shannon). Soit $f \in \mathcal{C}^{\infty}$ telle que sa transformée de Fourier est \mathcal{C}^{∞} à support compact, inclus dans $[-\omega, \omega]$. Alors pour $T > \frac{1}{2\omega}$, on a

$$f(t) = 2\omega T \sum_{n \in \mathbb{Z}} f(2i\pi nT) \operatorname{sinc}(\omega(t - 2\pi nT))$$

Remarque 40 : On peut reconstituer un signal physique en échantillonnant le signal "suffisamment" régulièrement.

DEVELOPPEMENT 1

Proposition 41 (Phénomène de Gibbs). On considère φ un signal carré : qui vaut 1 sur $]0,\pi[$ et 0 sur $]\pi,2\pi[$ et $\frac{1}{2}$ en ses discontinuités et prolongée par 2π -périodicité. Alors,

- 1. $\forall t \in \mathbb{R}, \varphi(t) = \frac{1}{2} + \frac{2}{\pi} \sum_{\nu=1}^{+\infty} \frac{\sin((2\nu 1)t)}{2\nu 1}$ (convergence simple de la série de Fourier).
- 2. La série de Fourier ne converge pas uniformément vers f. En effet,

$$||S_{2n-1}(\varphi)||_{\infty} \underset{n \to +\infty}{\longrightarrow} \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\pi} \frac{\sin(s)}{s} ds > 1$$

Remarque 42 : La série de Fourier d'un signal carré ne permet pas de reconstituer ses hautes fréquences.

3.3 Résolution de l'équation de la chaleur

DEVELOPPEMENT 2

Théorème 43. Soit $f \in \mathcal{C}^1([0,\pi],\mathbb{R})$ telle que $f(0) = f(\pi) = 0$. Alors, il existe une unique solution $u \in \mathcal{C}^2([0,\pi]\times]0, +\infty[) \cap \mathcal{C}^0([0,\pi]\times[0,+\infty[)$ à l'équation de la chaleur :

$$\begin{cases} \partial_t u & = \partial_{xx}^2 u & (x,t) \in [0,\pi] \times]0, +\infty[\\ u(x,0) & = f(x) & x \in [0,\pi] \\ u(0,t) = u(\pi,t) & = 0 & t \in [0,+\infty[\end{cases}$$

Références:

- Amrani, Suites et séries numériques, suites et séries de fonctions.
- Arnaudiès, Fraysse, Cours de mathématiques Tome 3.
- Beck, Malick, Peyré, Objectif agrégation.
- Chambert-Loir, Exercices de mathématiques pour l'agrégation.
- Gourdon, Analyse.
- Zuily, Quéffelec, Analyse pour l'agrégation.