Leçon 228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.

(2016) 228
(2018) 228

Dernier rapport du Jury :

(2017 : 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.) Cette leçon permet des exposés de niveaux très variés. Les théorèmes de base doivent être maîtrisés et illustrés par des exemples intéressants, par exemple le théorème des valeurs intermédiaires pour la dérivée. Le jury s’attend évidemment à ce que le candidat connaisse et puisse calculer la dérivée des fonctions usuelles. Les candidats doivent disposer d’un exemple de fonction dérivable de la variable réelle qui ne soit pas continûment dérivable. La stabilité par passage à la limite des notions de continuité et de dérivabilité doit être comprise par les candidats. De façon plus fine, on peut s’intéresser aux fonctions continues nulle part dérivables. Pour aller plus loin, la dérivabilité presque partout des fonctions lipschitziennes ou des fonctions monotones relève de cette leçon. L’étude de la dérivée au sens des distributions de $x \in [a,b] \longmapsto \int_a^x f(t) dt$ pour une fonction intégrable $f \in L^1([a,b])$ est un résultat intéressant qui peut trouver sa place dans cette leçon.

(2016 : 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et contre-exemples. ) Cette leçon permet des exposés de niveaux très variés. Les théorèmes de base doivent être maîtrisés et illustrés par des exemples intéressants, par exemple le théorème des valeurs intermédiaires pour la dérivée. Le jury s’attend à ce que le candidat connaisse et puisse calculer la dérivée des fonctions usuelles. Les candidats doivent disposer d’un exemple de fonction dérivable de la variable réelle qui ne soit pas continûment dérivable. La stabilité par passage à la limite des notions de continuité et de dérivabilité doit être comprise par les candidats. De façon plus fine, on peut s’intéresser aux fonctions continues nulle part dérivables. Pour aller plus loin, la dérivabilité presque partout des fonctions lipschitziennes ou des fonctions monotones relève de cette leçon. Les applications du théorème d’Ascoli (avec, par exemple, des exemples d’opérateurs à noyaux compacts), sont les bienvenues. L’étude de la dérivée au sens des distributions de $x \in [a,b] \longmapsto \int_a^x f(t) dt$ pour une fonction intégrable $f \in L^1([a,b])$ est un résultat intéressant.
(2015 : 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et contre-exemples.) Cette leçon permet des exposés de niveaux très variés. Les théorèmes de base doivent être maîtrisés et illustrés par des exemples intéressants, par exemple le théorème des valeurs intermédiaires pour la dérivée. Le jury s'attend à ce que le candidat connaisse et puisse calculer la dérivée des fonctions usuelles. Les candidats doivent disposer d'un exemple de fonction dérivable de la variable réelle qui ne soit pas continûment dérivable. La stabilité par passage à la limite des notions de continuité et de dérivabilité par passage à la limite doit être comprise par les candidats. Pour les candidats aguerris, la dérivabilité presque partout des fonctions lipschitziennes relève de cette leçon. Les applications du théorème d'Ascoli (par exemple les opérateurs intégraux à noyau continu, le théorème de Peano, ... ), sont les bienvenues. Pour les candidats qui maîtrisent la notion de dérivée au sens des distributions tempérées, l'étude de la dérivée au sens des distributions de la primitive d'une fonction intégrable est un résultat intéressant.
(2014 : 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et contre-exemples.) applications. Un plan découpé en deux parties (I : Continuité, II : Dérivabilité) n'est pas le mieux adapté. Les théorèmes de base doivent être maîtrisés et illustrés par des exemples intéressants. Les candidats doivent disposer d'un exemple de fonction dérivable de la variable réelle qui ne soit pas continûment dérivable. La dérivabilité presque partout des fonctions Lipschitziennes relève de cette leçon. Enfin les applications du théorème d'Ascoli (par exemple les opérateurs intégraux à noyau continu, le théorème de Peano, etc ), sont les bienvenues.

Plans/remarques :

2017 : Leçon 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.


2016 : Leçon 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et contre-exemples.


Retours d'oraux :

2017 : Leçon 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.

  • Leçon choisie :

    228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.

  • Autre leçon :

    236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonction d'une ou plusieurs variables.

  • Développement choisi : (par le jury)

    Sous-espace stable par translation

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Mon autre développement était l'exemple d'une fonction continue nulle part dérivable.
    Remarque sur le développement :
    -la fin de version habituellement trouvée sur internet est inutile puisque la relation fi'(t)=somme(bik'(0)fk(t)) donne directement f comme solution d'EDL homogène à coeffs constants. La fin avec l'histoire de poly minimal ne sert donc à rien...
    -exemple d'un ev de dim 3 non stable par translation ?
    -forme générale des solutions d'EDL h à coeff constants ?
    -qu'est-ce qu'un opérateur compact ?
    -qu'est-ce qu'une partie équicontinue ?
    -pourquoi l'opérateur à noyau que vous présentez est bien un opérateur compact ?
    -comment démontre-t-on le théorème de Baire ?
    -que se passe-t-il pour le théorème des fermés emboîtés si l'on ne suppose plus que le diamètre tend vers 0 ?
    Deux exercices:
    -une fonction qui admet une limite à droite en 0 et une limite à gauche en 0 mais ces limites sont différentes peut-elle être la dérivée d'une fonction ? (non via Darboux, dur à formaliser)
    -on a (fn) suite de fonctions continues qui CVS vers f continue sur [0,1], y'a-t-il CVU ? (réponse non...)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Un des trois était un peu sec sur le premier exo car je n'arrivais pas à formaliser correctement. Sinon plutôt sympas.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Beaucoup de questions sur le plan, exercices pas si évidents. Ils n'ont pas du tout creusé les exemples de mon plan (par ex l'opérateur à noyau), il leur suffisait juste que j'explique grosso modo la méthode. Mais il faut quand même maîtriser un minimum ce qu'on met dans le plan.

  • Note obtenue :

    Pas de réponse fournie.


Références utilisées dans les versions de cette leçon :

Les contre-exemples en mathématiques , Hauchecorne (utilisée dans 23 versions au total)
Analyse , Gourdon (utilisée dans 401 versions au total)
Cours d'analyse , Pommelet (utilisée dans 45 versions au total)
Analyse pour l'agrégation, Queffelec, Zuily (utilisée dans 163 versions au total)
Elements d'analyse réelle , Rombaldi (utilisée dans 50 versions au total)
Petit guide de calcul différentiel , Rouvière (utilisée dans 136 versions au total)