Dans cette version je compile trois façons différentes de calculer la transformée de Fourier de la gaussienne.
Je pense qu'on pourrait faire un développement où on calcule cette transformée par la formule de Cauchy et par unicité du prolongement analytique pour la leçon 250 ou 245, quitte à calculer seulement la transformée de $x \mapsto e^{-ax^2}$ avec $a = 1$ pour aller plus vite (ce que je fait dans mes notes).
Rappel : attention aux erreurs/typos possibles et à la pertinence des développements, c'est à vous de vérifier et de juger.
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.