(2017 : 202 - Exemples de parties denses et applications.)
Il ne faut pas négliger les exemples élémentaires comme les sous-groupes additifs de $R$ et leurs applications (par exemple la densité des $(\cos(n\theta)_{n \in N})$, ou encore les critères de densité dans un espace
de Hilbert. Le théorème de Weierstrass via les polynômes de Bernstein peut être abordé à des niveaux divers (le choix du point de vue probabiliste exige d’en maîtriser tous les aspects) suivant que l’on précise ou pas la vitesse de convergence voire son optimalité. Des exemples matriciels trouvent leur place dans cette leçon comme l’étude de l’adhérence de l’ensemble des matrices diagonalisables dans C (et même dans R pour les candidats voulant aller plus loin.)
Pour aller plus loin, la version plus abstraite du théorème de Weierstrass (le théorème de Stone-Weierstrass) est aussi intéressante et a de multiples applications. Cette leçon permet aussi d’explorer les questions d’approximation de fonctions par des polynômes et des polynômes trigonométriques, ou plus généralement la densité de certains espaces remarquables de fonctions dans les espaces de fonctions continues, ou dans les espaces $L^p$. Il est également possible de parler de l’équirépartition.
260 : Espérance, variance et moments d’une variable aléatoire.
Pas de réponse fournie.
Pas de réponse fournie.
Sur le développement, le jury n'avait pas beaucoup de questions. Ils m'ont demandé des précisions sur un point du développement. Puis ils m'ont demandé si je connaissais un exemple explicite de fonction continue mais pas dérivable. J'en connaissais une, j'ai donné l'expression (sous forme d'une série de fonctions) puis le jury m'a demandé si je pouvais la dessiner. Je ne savais pas, le jury m'a donc dit de dessiner la fonction en ne considérant que les trois premiers termes de la série. Puis, on est passé aux questions sur le plan.
Le jury m'a demandé d'étudier la densité de la suite $u_n = \mathrm e^{\mathrm i n \alpha}$. J'avais le résultat sur la densité des sous-groupes $a\mathbb Z + b\mathbb Z$ dans mon plan, j'ai pu répondre rapidement. Le jury m'a ensuite demandé ce que j'avais à dire sur les fermés d'intérieur vide et les fermés de mesure nulle : y a-t-il une implication ? une équivalence ? J'ai donné l'implication et j'ai dit que la réciproque était fausse. Le jury m'a alors demandé si je connaissais un exemple de fermé d'intérieur vide qui ne serait pas de mesure nulle. J'ai tenté une réponse avec un Cantor gras, mais je me suis un peu embourbé dans l'explication. Le jury m'a demandé de trouver un exemple plus simple, en considérant le complémentaire. L'idée m'est venue d'un coup et j'ai donné l'exemple qu'ils attendaient.
Dans mon plan, je parlais du critère de densité dans les espaces de Hilbert (orthogonal réduit à $\{0\}$). Le jury m'a demandé si je connaissais une généralisation de ce critère dans d'autres espaces. Après une première réponse confuse, j'ai répondu "Hahn-Banach". Le jury m'a demandé de préciser les hypothèses sur l'espace. J'ai répondu que ça fonctionnait en dimension finie. Le jury m'a alors demandé ce qu'il fallait en dimension infini. j'ai répondu qu'il fallait que l'espace soit complet mais que je ne connaissais pas bien le théorème en dimension infini et le jury est passé à autre chose.
J'avais mis le théorème d'approximation de Weierstrass dans mon plan (par les polynômes de Bernstein). Le jury m'a demandé ce que je pouvais dire de l'ensemble des polynômes de degré $\leqslant n$. J'ai répondu qu'il n'était pas dense. Le jury m'a demandé pourquoi. J'ai répondu qu'en prenant une fonction qui oscille beaucoup, on ne pourrait pas l'approcher convenablement par des polynômes de petit degré. Le jury n'a pas été convaincu par cette réponse (peu convaincante, je le reconnais). Le jury m'a demandé de prendre un exemple. J'ai répondu qu'on pouvait considérer un polynôme de degré $n+1$, puis j'ai eu l'idée de la réponse et on est passé à la question suivante.
Le jury m'a demandé de montrer que dans un espace de Banach de dimension infinie, un s.e.v. de dimension finie était toujours d'intérieur vide. Ils m'ont ensuite demandé de prouver qu'un espace de Banach de dimension infinie n'admettait pas de base dénombrable. Je connaissais la réponse (Baire !).
Le jury m'a demandé une précision sur un item de mon plan. Je parlais de $\mathrm{SL}_n(\mathbb R)$ comme hypersurface de $\mathcal M_n(\mathbb R)$, le jury se demandait quel était le rapport avec la leçon. J'ai répondu que c'était une application du calcul de la différentielle du déterminant, que je faisais par densité de $\mathrm{GL}_n(\mathbb R)$. Le jury m'a demandé de le faire, j'ai expliqué comment j'allais faire, ça leur a suffit.
Pour revenir sur Baire, le jury m'a demandé de démontrer un résultat plus élémentaire : si $U$ et $V$ sont deux ouverts denses, montrer que $U\cap V$ est dense (sans utiliser Baire bien sûr). J'ai retrouvé rapidement la démonstration, le jury est passé à la question suivante.
La dernière question du jury était un exercice d'analyse réelle : soit $(u_n)$ une suite de réels strictement positifs, croissante et telle que $\frac{u_{n+1}}{u_n} \to 1$ ; montrer que $\{ \frac{u_m}{u_n} : m>n \}$ est dense dans ${[1,+\infty[}$. Je n'avais pas vraiment d'idées, j'ai tenté des choses qui n'allaient nulle part. Le jury m'a laissé mariner plusieurs minutes, puis voyant que je ne m'en sortais pas, a commencé à me guider. J'ai eu pas mal de difficultés à suivre leurs indications (j'avançais par micro-étapes, sans voir où ça allait) et après plusieurs minutes (et beaucoup d'indications), j'ai fini par y arriver. Le temps était alors écoulé, l'entretient s'est terminé sur cet exercice.
Pas de réponse fournie.
Pas de réponse fournie.
Pas de réponse fournie.
Pas de réponse fournie.
Pas de réponse fournie.
Le jury m'a fait préciser des éléments dans le développement. pas de difficultés particulières.
Q : Redémontrer le th de Weierstrass : j'ai donné les idées
Q : Comment on démontrer la CNS de densité dans les espaces de Hilbert avec la nullité de l'orthogonal (réponse : grâce au th de projection) ?
Q : Densité des fct C infini dans C1 et C0 : j'ai un peu patazouillé mais ils ont vu que j'avais compris.
Q : Calculer une ou deux séries de Fourier : calcul arrêté avant la fin car il y avait une triple intégratio par parties chronophage au tableau.
Q : Démontrer la densité des matrices diagonalisables dans M_n(C). Fait
Q : Densité via la convolution : la on était en mode pas à pas car je ne connaissais pas les résultats associés (la régularité qu'on gagne...).
J'ai donné les idées avec les approximations de l'unité qu'on peut choisir C inifni.
Q : comment on démontre Hilbert séparable ssi .... : j'ai réussi on l'a fait ensemble.
Fin de l'oral.
Plutôt bienveillant mais qui a enchainé les questions à un rythme rapide...
Mieux que prévu. c'était le premier jour j'étais frais et dispo, j'ai fait mon plan en 3H et mes deux développements étaient de bons niveau et maîtrisés.
J'ai globalement su répondre aux questions, avec des trous et en étant un peu guidé quand même...
Pronostic de note (un peu casse gueule mais il faut essayer d'estimer son travail) : 14
11.5
260 : Espérance, variance et moments d'une variable aléatoire.
Pas de réponse fournie.
Pas de réponse fournie.
1. Est-ce que $\sum\limits_{n}z^n$ est dans l'espace de Bergman du disque unité?
2. Quelle est la transformée de Fourier de $x\mapsto\frac{1}{\sqrt{1+x^2}}$?
Pendant la résolution de ce deux exercices de nombreuses questions m'ont étaient posées, notamment sur la convergence des séries entières, la détermination de leur rayon de convergence et les intégrales semi-convergentes.
L'un des trois membres du jury faisait mine de s'endormir, un autre me mitraillait de questions.
Aucune surprise.
15.00