Développement : Series de Fourier des applications continues

Détails/Enoncé :

Versions :

  • Auteur :
  • Remarque :
    Énoncé :
    -- Pour tout élément $x_0$ de $\mathbb{R}$, il existe un ${\mathcal G}_\delta$ dense $D$ de $({\mathcal C }_{2\pi},\|\cdot\|_\infty)$, tel que pour tout élément $f$ de $D$,
    $$ \mathop{\sup}\limits_{n\in\mathbb{N}}|S_n(f)(x_0)|=+\infty,$$ (en particulier la série de Fourier de $f$ diverge en $x_0$.)
    -- Il existe un ${\mathcal G}_\delta$ dense $\Delta$ de $({\mathcal C }_{2\pi},\|\cdot\|_\infty)$, tel que pour tout élément $f$ de $\Delta$,
    l'ensemble
    $$
    \left\{x\in \mathbb{R}\;\big|\; \mathop{\sup}\limits_{n\in\mathbb{N}}|S_n(f)(x)|=+\infty
    \right\}
    $$
    soit un ${\mathcal G}_\delta$ dense de $(\mathbb{R},|\cdot|)$.

    Référence : Analyse pour l'agrégation de mathématiques, 40 développements, J. et L. Bernis, Ellipses
  • Référence :