Leçon 228 : Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.

(2018) 228
(2020) 228

Dernier rapport du Jury :

(2019 : 228 - Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.) Cette leçon est reformulée pour la session 2020 sous la forme $\\$ "Continuité, dérivabilité, dérivation faible des fonctions réelles d’une variable réelle. Exemples et applications. $\\$ Cette leçon permet des exposés de niveaux, et de forme, très variés. Les théorèmes de base doivent être maîtrisés et illustrés par des exemples intéressants, par exemple le théorème des valeurs intermédiaires pour la dérivée, le théorème de Rolle... Le jury s’attend évidemment à ce que les candidats connaissent et puissent calculer la dérivée des fonctions usuelles. Les candidats doivent disposer d’un exemple de fonction dérivable de la variable réelle qui ne soit pas continûment dérivable. La stabilité par passage à la limite des notions de continuité et de dérivabilité doit être comprise par les candidats. Pour aller plus loin, les propriétés de régularité des fonctions monotones et des fonctions convexes peuvent être mentionnées. La dérivabilité presque partout des fonctions lipschitziennes peut aussi relever aussi de cette leçon. On peut enfin s’intéresser à des exemples de fonctions continues nulle part dérivables. $\\$ Le nouvel intitulé doit conduire à analyser la généralisation de la notion de dérivée d’une fonction de $\textbf{R}$ dans $\textbf{R}$ à l’aide du principe de calcul « par dualité/transposition » de la théorie des distributions. Plus qu’une analyse fonctionnelle poussée, le jury attend une certaine familiarité avec le calcul de dérivées faibles, dans ce cadre particulier de fonctions de $\textbf{R}$ dans $\textbf{R}$, qu’on n’hésitera pas à motiver par des applications (en physique, en théorie du signal,...). On peut étudier les liens entre dérivée classique et dérivée faible, calculer la dérivée faible de fonctions discontinues (formule des sauts, par exemple pour des fonctions de classe $C^{\infty}$ sur $\textbf{R}^*$ et $C^{\infty}$ par morceaux sur $\textbf{R}$ comme la fonction de Heaviside, la valeur absolue) ou de fonctions du type $x \mapsto \int_a^x f(y)dy$, f étant intégrable. On peut aussi relier la dérivée faible et la limite du taux d’accroissement au sens des distributions et établir le lien entre fonction croissante et dérivée faible positive. Il est également possible de parler du peigne de Dirac. Pour aller encore plus loin, des exemples de convergence au sens des distributions peuvent tout à fait illustrer cette leçon.

(2017 : 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.) Cette leçon permet des exposés de niveaux très variés. Les théorèmes de base doivent être maîtrisés et illustrés par des exemples intéressants, par exemple le théorème des valeurs intermédiaires pour la dérivée. Le jury s’attend évidemment à ce que le candidat connaisse et puisse calculer la dérivée des fonctions usuelles. Les candidats doivent disposer d’un exemple de fonction dérivable de la variable réelle qui ne soit pas continûment dérivable. La stabilité par passage à la limite des notions de continuité et de dérivabilité doit être comprise par les candidats. De façon plus fine, on peut s’intéresser aux fonctions continues nulle part dérivables. Pour aller plus loin, la dérivabilité presque partout des fonctions lipschitziennes ou des fonctions monotones relève de cette leçon. L’étude de la dérivée au sens des distributions de $x \in [a,b] \longmapsto \int_a^x f(t) dt$ pour une fonction intégrable $f \in L^1([a,b])$ est un résultat intéressant qui peut trouver sa place dans cette leçon.
(2016 : 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et contre-exemples. ) Cette leçon permet des exposés de niveaux très variés. Les théorèmes de base doivent être maîtrisés et illustrés par des exemples intéressants, par exemple le théorème des valeurs intermédiaires pour la dérivée. Le jury s’attend à ce que le candidat connaisse et puisse calculer la dérivée des fonctions usuelles. Les candidats doivent disposer d’un exemple de fonction dérivable de la variable réelle qui ne soit pas continûment dérivable. La stabilité par passage à la limite des notions de continuité et de dérivabilité doit être comprise par les candidats. De façon plus fine, on peut s’intéresser aux fonctions continues nulle part dérivables. Pour aller plus loin, la dérivabilité presque partout des fonctions lipschitziennes ou des fonctions monotones relève de cette leçon. Les applications du théorème d’Ascoli (avec, par exemple, des exemples d’opérateurs à noyaux compacts), sont les bienvenues. L’étude de la dérivée au sens des distributions de $x \in [a,b] \longmapsto \int_a^x f(t) dt$ pour une fonction intégrable $f \in L^1([a,b])$ est un résultat intéressant.
(2015 : 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et contre-exemples.) Cette leçon permet des exposés de niveaux très variés. Les théorèmes de base doivent être maîtrisés et illustrés par des exemples intéressants, par exemple le théorème des valeurs intermédiaires pour la dérivée. Le jury s'attend à ce que le candidat connaisse et puisse calculer la dérivée des fonctions usuelles. Les candidats doivent disposer d'un exemple de fonction dérivable de la variable réelle qui ne soit pas continûment dérivable. La stabilité par passage à la limite des notions de continuité et de dérivabilité par passage à la limite doit être comprise par les candidats. Pour les candidats aguerris, la dérivabilité presque partout des fonctions lipschitziennes relève de cette leçon. Les applications du théorème d'Ascoli (par exemple les opérateurs intégraux à noyau continu, le théorème de Peano, ... ), sont les bienvenues. Pour les candidats qui maîtrisent la notion de dérivée au sens des distributions tempérées, l'étude de la dérivée au sens des distributions de la primitive d'une fonction intégrable est un résultat intéressant.
(2014 : 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et contre-exemples.) applications. Un plan découpé en deux parties (I : Continuité, II : Dérivabilité) n'est pas le mieux adapté. Les théorèmes de base doivent être maîtrisés et illustrés par des exemples intéressants. Les candidats doivent disposer d'un exemple de fonction dérivable de la variable réelle qui ne soit pas continûment dérivable. La dérivabilité presque partout des fonctions Lipschitziennes relève de cette leçon. Enfin les applications du théorème d'Ascoli (par exemple les opérateurs intégraux à noyau continu, le théorème de Peano, etc ), sont les bienvenues.

Développements :

Plans/remarques :

2019 : Leçon 228 - Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.


2018 : Leçon 228 - Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.


2017 : Leçon 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.


2016 : Leçon 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et contre-exemples.


Retours d'oraux :

2019 : Leçon 228 - Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.

  • Leçon choisie :

    228 : Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.

  • Autre leçon :

    234 : Fonctions et espaces de fonctions Lebesgue-intégrables.

  • Développement choisi : (par le jury)

    Théorème de Weierstrass (par la convolution)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Le jury est d'abord rapidement revenu sur mon développement. Il m'a notamment demandé de préciser les hypothèses pour utiliser la convolution de fonctions (Puisque on prend f continue à support compact et g une approximation de l'unité, tout se passe bien. Mais jusqu'où peut-on pousser le vice ?).
    Concernant le plan, le jury m'a demandé un contre-exemple de fonction dérivable et pourtant de classe non C1. J'ai commencé par proposer x*sin(1/x), le jury m'a fait prouver qu'elle n'était pas dérivable en 0 et j'ai donc modifier ma proposition en x^2 * sin(1/x). J'ai ensuite rapidement démontré que la dérivée n'était pas continue et ne pouvait pas être prolongée par continuité non-plus.
    Puisque tout l'argument de la fonction précédente tenait sur les problèmes en 0. L'un des jurys a voulu pousser un peu plus loin et m'a demandé de démontrer le résultat suivant : Si f est continue, dérivable dans un voisinage de a (mais pas forcément en a) et que f' admet une limite finie en a. Alors f est dérivable en a et f'(a) est la-dite limite. Ceci se fait par théorème des accroissements finis, on pouvait également effectuer une interversion de limite en revenant à la définition de la dérivée, mais le jury m'a demandé de ne pas utiliser cette option.
    Pour conclure, j'ai montré qu'une fonction continue dont le carré donne 1 est forcément constante (théorème des valeurs intermédiaire et un ou deux arguments assez naturels).

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Très sympathique, l'un d'entre eux avait un sourire très apaisant. Ça fait très hippie d'écrire ça, mais les regarder dans les yeux aidait à évacuer le stress.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Voir mon commentaire sur la leçon 142.

  • Note obtenue :

    9.25


2018 : Leçon 228 - Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.

  • Leçon choisie :

    228 : Continuité et dérivabilité des fonctions réelles d’une variable réelle. Exemples et applications.

  • Autre leçon :

    222 : Exemples d’équations aux dérivées partielles linéaires.

  • Développement choisi : (par le jury)

    Densité des fonctions continues nulles part dérivables

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Q : A quoi appliquez-vous le théorème de Baire, pour conclure votre développement ? (j'ai du m'interrompre après avoir montré U dense)
    R : A l'espace complet (C([0,1]) ||.||infinie ). Et la famille d'ouverts est celle des U(n, 1/n).

    Q : On appelle X cette intersection d'ouverts dense. Prenez une fonction f dans C([0,1]), que pouvez vous dire de l'ensemble (f+X) inter X ?
    R : Il est dense, comme intersection d'ouverts denses. (mais j'ai galéré comme pas possible avant de répondre ça...)
    Il y avait visiblement pas mal d'autres choses à en dire, mais ils ont voulu passer à une autre question.

    Q : Quelle est la structure de l'espace des fonctions bornées sur R muni de la norme infinie ? Et celui des fonctions continues et bornées ?
    R : Banach, et encore Banach.

    Q : On prend une suite fn qui cvu vers f sur [0,1], quelle est la limite de fn(1/n) ?
    R : C'est un cas particulier d'une propriété du plan (et du développement), c'est f(0). Pour démontrer cette propriété, je fais...blablabla.

    Q : Vous avez un exemple de suite qui cvs sur [0,1] mais pour laquelle cette propriété n'est pas vraie ?
    R : L'idée ça va être de s'inspirer du contre exemple classique de la suite fn(x)=x^n, pour laquelle on a cvs mais pas cvu en 1. Seulement là on veut que le problème soit en 0, donc on prend... 1-x^n. (Ici le jury me traite de crétin et me dit de rajouter des parenthèses) (1-x)^n, donc. Et là...c'est bon c'est un contre exemple.

    Q : On va revenir au théorème de Weierstrass, que pouvez vous dire sur la vitesse de convergence des polynômes de Bernstein ?
    R : Il me semble qu'elle est optimale, mais sinon ça dépend du module de convergence de notre fonction. (Merci Zuily Queffelec, pour une fois
    que tu me sers à quelque chose...)

    Q : Toujours lié Weierstrass : Soit f(x)=|x-1/2| (sur [0,1]), Xn iid suivant des bernoulli 1/2, Sn leur somme, et (un) la suite définie par racine(n)*somme de [je sais plus quoi]. Pouvez vous expliciter un peu mieux le terme général de (un) ?
    R : (encore une fois j'ai bien pataugé, c'est bien pour ça que je ne me souviens pas de l'énoncé !) "on peut exprimer un comme racine(n) fois l'espérance d'une certaine variable aléatoire, grâce au théorème de transfert." Ensuite on utilise le théorème central limite à un moment où un autre, pour faire je ne sais pas trop quoi car l'exercice (et l'oral) s'est interrompu au moment où j'écrivait le TCL.
    (Désolé de ne pas être plus précis sur cet exercice...mais la morale de l'histoire c'est : si vous présentez Weierstrass, ayez bien en tête vos formule de proba de base, moi j'avoue que j'ai eu peur d'écrire le mauvais TCL au tableau...)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Il y avait deux hommes et une femme, l'un d'entre eux essayait visiblement de détendre au maximum l'atmosphère en faisant de l'humour dès que possible. C'est aussi lui qui a posé la majorité des questions et qui semblait gérer le déroulement de l'oral La femme n'a pas parlé de tout l'oral, mais elle avait l'air d'écouter ce que je disais et de surveiller mon plan.
    Enfin il y avait un deuxième homme, il m'a posé quelques questions mais sinon il n'intervenait pas trop.

    Donc : une muette, un blagueur et un neutre. Ils aidaient pas mal sur les questions.
    Ils étaient aussi très tatillon sur le temps, pour mon développement à 15 minutes piles j'ai du terminer sans écrire. Pour le plan à 5 minutes ils m'ont dit de me dépêcher de conclure.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pour la préparation :
    Pas de grande surprise, ça se passe exactement comme c'est décrit dans les nombreux retours d'oraux (notamment le fait qu'on n'a pas 3 heures de préparation...). La seule chose qui m'ait un peu étonné car je n'y avais pas réfléchi, c'est que lors de la préparation on n'est pas du tout seul, il y a une dizaine de candidats qui se préparent dans la même salle que nous.

    Pour l'oral :
    Naïvement j'ai cru que tout allait bien se passer, car la veille au soir j'avais vu un candidat passer sur exactement la même leçon (avec un autre jury que le mien) et donc j'avais pu entendre plein de questions qu'il a eu :
    Démontrer Darboux, Rolle, Heine, donner des exemples de fonction C^infini non holomorphe, ...
    De ce que j'avais vu, les candidats sont longtemps interrogés sur leur plan/développement, ou sur les questions présentes dans le rapport du jury. Si bien qu'il n'y a presque aucun exercice "sorti de nulle part".

    Pour mon oral c'est tout l'inverse : aucune question sur le plan, aucune question pour détailler le développement (malgré une légère coquille présente au tableau, qu'ils n'ont jamais mentionné), mais directement des exercices...bref, j'ai beau avoir vu un oral sur cette leçon juste avant de passer, contre toute attente ça ne m'a servi strictement à rien..

  • Note obtenue :

    11.25


2017 : Leçon 228 - Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.

  • Leçon choisie :

    228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.

  • Autre leçon :

    236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonction d'une ou plusieurs variables.

  • Développement choisi : (par le jury)

    Sous-espace stable par translation

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Mon autre développement était l'exemple d'une fonction continue nulle part dérivable.
    Remarque sur le développement :
    -la fin de version habituellement trouvée sur internet est inutile puisque la relation fi'(t)=somme(bik'(0)fk(t)) donne directement f comme solution d'EDL homogène à coeffs constants. La fin avec l'histoire de poly minimal ne sert donc à rien...
    -exemple d'un ev de dim 3 non stable par translation ?
    -forme générale des solutions d'EDL h à coeff constants ?
    -qu'est-ce qu'un opérateur compact ?
    -qu'est-ce qu'une partie équicontinue ?
    -pourquoi l'opérateur à noyau que vous présentez est bien un opérateur compact ?
    -comment démontre-t-on le théorème de Baire ?
    -que se passe-t-il pour le théorème des fermés emboîtés si l'on ne suppose plus que le diamètre tend vers 0 ?
    Deux exercices:
    -une fonction qui admet une limite à droite en 0 et une limite à gauche en 0 mais ces limites sont différentes peut-elle être la dérivée d'une fonction ? (non via Darboux, dur à formaliser)
    -on a (fn) suite de fonctions continues qui CVS vers f continue sur [0,1], y'a-t-il CVU ? (réponse non...)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Un des trois était un peu sec sur le premier exo car je n'arrivais pas à formaliser correctement. Sinon plutôt sympas.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Beaucoup de questions sur le plan, exercices pas si évidents. Ils n'ont pas du tout creusé les exemples de mon plan (par ex l'opérateur à noyau), il leur suffisait juste que j'explique grosso modo la méthode. Mais il faut quand même maîtriser un minimum ce qu'on met dans le plan.

  • Note obtenue :

    Pas de réponse fournie.


Références utilisées dans les versions de cette leçon :

Analyse , Gourdon (utilisée dans 549 versions au total)
Mathématiques pour l'agrégation : Analyse et Probabilités , Jean-François Dantzer (utilisée dans 39 versions au total)
Cours d'analyse , Pommelet (utilisée dans 47 versions au total)
Petit guide de calcul différentiel , Rouvière (utilisée dans 205 versions au total)
Les contre-exemples en mathématiques , Hauchecorne (utilisée dans 34 versions au total)
Analyse pour l'agrégation, Queffelec, Zuily (utilisée dans 206 versions au total)
Elements d'analyse réelle , Rombaldi (utilisée dans 87 versions au total)