Voir les pp.64 à 76 de Calcul intégral de Candelpergher (notamment les pp.70 à 74). La formule d'Euler-MacLaurin exposée dans ce livre permet de donner plusieurs développements asymptotiques assez précis, à part pour le terme constant en général (mais pour x -> 1/x^2 par exemple on peut utiliser de l'analyse harmonique de base pour déterminer le terme constant (la somme des 1/n^2)).
A la fin de mes devs je mets toujours une petite note sur les résultats annexes à savoir, c'est très subjectif et non exhaustif, il y a évidemment pleins d'autres choses à savoir sur chaque dev que ce que je mets.
Pour me contacter si besoin : axel.carpentier2001@gmail.com
Références utilisées dans les versions de ce développement :
Calcul intégral, Candelpergher (utilisée dans 33 versions au total)
Connexion
Inscription
Confirmer la suppresion
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.