1 Continuité et dérivabilité des fonctions à variables et à valeurs réels

1.1 Définition de la continuité

Définition 1. Une fonction $f: I \to \mathbb{R}$ est dite continue en $a \in I$ si f admet une limite finie quand x tend vers a.

Elle est dit continue sur I si elle est continue en tout point de I.

Exemple 2. La fonctions $x \mapsto \mathbb{M}_{\mathbb{Q}}$ n'est pas continue sur \mathbb{R} .

Théorème 3. f est continue en $a \iff pour toute suite <math>(x_n)_n$ de réels qui tend vers a, on $\grave{a} f(x_n) \underset{n \to +\infty}{\to} f(a)$.

Remarque 4. La somme, le produit, la composition et l'inverse (avec les bonnes hypothèses), de deux fonctions continues fournit une application continue.

Application 5. Soit $(u_n)_n$ définie par $u_0 \in I$ et $u_{n+1} = f(u_n)$ avec $f: I \to \mathbb{R}$. Alors si la suite $(u_n)_n$ converge, sa limite est une point fixe de f.

Théorème 6 (Prolongement par continuité). Soit $f: I \to \mathbb{R}$ une fonction continue sur I. Si f admet une limite finie α quand x tend vers a bord de I, alors l'application $\bar{f}: I \cup \{a\} \to \mathbb{R}$ qui vaut α en a et f sur I est une application continue.

Exemple 7. L'application $x\mapsto \frac{\sin(x)}{x}$ est prolongeable en 0 par continuité.

1.2 Continuité sur un compact

Proposition 8. Une fonction continue sur un segment [a,b] est bornée et atteint ses bornes.

Contre-Exemple 9. L'hypothèse de segment est fondamentale :

 $x \mapsto \frac{1}{t}$ est continue sur]0,1] mais n'atteint pas ses bornes.

 $x\mapsto \overset{\circ}{t}$ sur [0,1[est continue bornée mais n'atteint pas sa borne supérieure

 $x\mapsto \frac{1}{1+t^2}$ est continue,
bornée sur $\mathbb R$, mais n'atteint pas sa borne inférieure 0.

Définition 10. Une fonction $f:I\to\mathbb{R}$ est dite uniformément continue sur I si $\forall \varepsilon>0, \exists \alpha>0$ tel que $\forall (x,y)\in I^2, \ (|x-y|<\alpha) \implies (|f(x)-f(y)|<\varepsilon)$

Exemple 11. La fonction $x \mapsto \frac{1}{x}$ n'est pas uniformément continue sur]0,1], mais elle est continue.

Théorème 12 (Heine). Une application continue sur un compact est uniformément continue.

Application 13. Une fonction continue et périodique sur \mathbb{R} est uniformément continue

1.3 Dérivabilité

Définition 14. Soit $f: I \to \mathbb{R}$, f est dite dérivable en a si la quantité $\frac{f(t) - f(a)}{(t-a)}$

admet une limite finie l quand $t \to a$. On note f'(a) = l.

f est dite dérivable sur I sur elle l'est en tout point de I. Dans ce cas, on définit l'application dérivée $f':I\to\mathbb{R}$.

Faire un dessin en **ANNEXE** qui permet d'interpréter la dérivée de f en a comme la pente de f en a.

Remarque 15. Si f est dérivable sur I et sa dérivée est continue sur I, elle est dit de classe C^1 . On définit par reccurence la classe C^n .

Contre-Exemple 16. La fonction $x\mapsto |x|$ n'est pas dérivable en 0. (Elle est dérivable à droite et à gauche).

Proposition 17. Si f est dérivable en a, alors f est continue en a

Exemple 18. La fonction dérivée n'est pas forcément continue : $x \mapsto x^2 \sin(\frac{1}{x})$

Théorème 19. Soit f, g deux applications de $I \to \mathbb{R}$, dérivables en a. Alors :

- $(f + \lambda g)$ est dérivable en a, et $(f + \lambda g)'(a) = f'(a) + \lambda g'(a)$
- (fg) est dérivable en a, et (fg)'(a) = f'(a)g(a) + f(a)g'(a)
- $-\ si\ g(a)\neq 0,\ (\frac{f}{g})\ est\ d\acute{e}rivable\ en\ a,\ et\ (\frac{f}{g})'(a)=\frac{f'(a)g(a)+f(a)g'(a)}{g'(a)^2}$

Théorème 20 (Règle de Leibniz). Si $f^{(n)}(a)$ et si $g^{(n)}(a)$ existent, alors $(fg)^{(n)}(a)$ existe et $(fg)^{(n)}(a) = \sum_{k=0}^{n} f^{(k)}(a)g^{(n-k)}(a)$

Théorème 21. On donne la dérivée d'une composée de deux fonctions

Théorème 22. Soit f une bijection de I dans J dérivable en a. Si $f'(a) \neq 0$, alors f^{-1} est dérivable en b = f(a) et $f^{-1}'(b) = \frac{1}{f'(f(a))}$

Exemple 23. On donne en ANNEXE un tableau donnant plusieurs dérivées usuelles.

2 Des théorèmes classiques

2.1 Le théorème des valeurs intermédiaires

Théorème 24. Soit f une fonction continue sur de I intervalle de \mathbb{R} dans \mathbb{R} . Alors f(I) est un intervalle de \mathbb{R} .

Corollaire 25. Si $f:[a,b] \to \mathbb{R}$ est continue et telle que f(a) < 0 et f(b) > 0, alors il existe $c \in]a,b[$ tel que f(c) = 0

Exemple 26. Le réel c n'est pas unique : $x \mapsto x^3 - x$ sur [-2, 2].

Application 27 (Formule de la moyenne). Soit $f:[a,b] \to \mathbb{R}$ continue et $f:[a,b] \to \mathbb{R}^+$ continue par morceaux et positives. Alors il existe $c \in [a,b]$ tel que $\int_a^b f(t)g(t)dt = f(c)\int_a^b g(t)dt$

Théorème 28. Théorème de la bijection monotone.

Application 29. Théorème de Darboux.

2.2 Théorème de Roll et ses conséquences

Proposition 30. Si $f: I \to \mathbb{R}$ admet un extrema relatif en c à l'intérieur de I et si f est dérivable en c, alors f'(c) = 0.

Théorème 31 (Roll). Soit $f:[a,b] \to \mathbb{R}$ une application déribable sur]a,b[et continue sur [a,b], telle que f(a)=f(b). Alors il existe $c \in]a,b[$ tel que f'(c)=0. On fait un dessin en ANNEXE.

Contre-Exemple 32. $x \mapsto x$ sur [0,1]. La réciproque est fausse : $x \mapsto x^3n$

Théorème 33 (Théorème des accroissements finies). Soit $f:[a,b] \to \mathbb{R}$ une application déribable sur [a,b[et continue sur [a,b[. Alors il existe $c \in]a,b[$ tel que $f'(c) = \frac{f(b) - f(a)}{b-a}$. On fait un dessin en **ANNEXE**.

Application 34 (Inégalité des accroisssements finies). Soit f continue et dérivable sur [a,b], tel que f' est bornée par M sur [a,b]. Alors $\forall (x,y) \in [a,b], |f(x)-f(x)| \leq M|x-y|$.

Corollaire 35. Une fonction $f : [a,b] \to \mathbb{R}$ continue sur [a,b] et dérivable sur [a,b] est croissante sur $[a,b] \iff 0 \le f'(x), \ \forall x \in]a,b[$.

Corollaire 36. Soit $f: I \to \mathbb{R}$ continue sur I et dérivable sur $I/\{c\}$. Alors si f' admet une limite l en c, alors f est dérivable en c et f'(c) = l.

2.3 Développements de Taylor

Théorème 37 (Théorème de Taylor-Lagrange). Soit $f:[a,b] \to \mathbb{R}$ une fonction de classe C^n sur [a,b], tel que $f^{(n+1)}$ existe sur [a,b[. Alors il existe $c \in]a,b[$ tel que $f(b) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(b-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$

Théorème 38 (Formule de Taylor-Young). Soit $f:[a,b] \to \mathbb{R}$ une fonction de classe C^n sur [a,b], tel que $f^{(n+1)}$ existe sur [a,b]. Alors pour h proche de a on a: $f(a) = \sum_{k=0}^n \frac{f^{(k)}(a+h)}{k!} h^k + \frac{f^{(n+1)}(a)}{(n+1)!} h^{n+1} + o(h^{n+1}).$

Théorème 39 (Méthode de Newton). Soit $f:[c,d] \to \mathbb{R}$ de classe C^2 . On suppose que f(c) < 0 < f(d) et f'(x) > 0 sur [c,d]. On considère la suite définie par réccurence : $x_0 \in [c,d]$, $x_{n+1} = F(x_n)$ où $F: t \mapsto t - \frac{f(t)}{f'(t)}$. Alors :

- Faire un dessin en ANNEXE.
- f admet un unique zéro sur[c,d]. Il existe $\alpha > 0$ tel que $[a-\alpha, a+\alpha] = I$ soit F-stable et que $\forall x_0 \in [a-\alpha, a+\alpha] = I$, la suite $(x_n)_n$ converge quadratiquement vers a.
- Si de plus f''(x) > 0 sur [c,d], alors le résultat précédent est valable pour I = [a,d], et de plus $(x_n)_n$ est décroissante (ou constante) vers a et on à l'équivalent : $x_{n+1} a \sim \frac{f''(a)}{2f'(a)}(x_n a)^2$.

Théorème 40 (Formule de Taylor-Young à reste intégrale). Soit $f:[a,b] \to \mathbb{R}$ une fonction de classe C^{n+1} sur [a,b]. Alors $f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(b-a)^k + \int_{a}^{b} \frac{f^{(n+1)}(t)}{n!}(b-t)^{n+1}dt$

3 Suite de fonctions

Théorème 41. Soit $(f_n)_n$ une suite de fonction continues de $I \to \mathbb{R}$. Si (f_n) converge uniformément vers une fonction f sur I, alors f est continue.

Application 42 (Théorème de Dini). — Soit $(f_n)_n$ une suite croissante de fonctions réelles continues sur [a,b] qui converge vers une fonction f continue sur [a,b]. Alors la convergence est uniforme.

- Soit $(f_n)_n$ une suite de fonctions réelles croissante sur [a,b] qui converge vers une fonction f continue sur [a,b]. Alors la convergence est uniforme.
- On construit une suite de fonction qui tend uniformément vers $t \mapsto \sqrt{t}$ sur [0,1].

Théorème 43 (De Weierstrass). Toute fonction continue sur le segment [a,b] est limite uniforme d'une suite de polynômes.

Théorème 44. Soit $(f_n)_n$ une suite de fonction de classe C^1 de $I = [a, b] \to \mathbb{R}$. On suppose qu'il existe une fonction f de $I \to \mathbb{R}$ telle que : il existe $x_0 \in I$ tel que $(f_n(x_0))_n$ converge et $(f'_n)_n$ converge uniformément vers une fonction g sur [a, b]. Alors $(f_n)_n$ converge uniformément vers une fonction f de classe C^1 qui vérifie f' = g.

4 Des fonctions particulières

4.1 Fonctions lipschitziennes

Définition 45. Une fonction $f: I \to \mathbb{R}$ est dite k-lipschitzienne si pour tout $(x,y) \in I^2$, $|f(x) - f(y)| \le k|x - y|$.

Remarque 46. Une fonction k-lipschitzienne est uniformément continue.

Théorème 47 (théorème de Banach-Picard). Soit $f: I \to E$ une application k-lipschitzienne avec 0 < k < 1. Alors f admet un unique point fixe et toute suite définie par $u_0 \in E$ puis $u_{n+1} = f(u_n)$ converge vers ce point fixe.

Exemple 48. La suite définie par $u_0 \in [0, +\infty[$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{12 + u_n}$ converge vers 4.

4.2 Fonctions convexes

Définition 49. Une fonction $f: I \to \mathbb{R}$ (I intervalle de \mathbb{R}) est dite convexe si $\forall (x,y) \in I^2, \ \forall \lambda \in [0,1], \ f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$. Concrètement, cela signifie que f est au dessus de ses cordes.

Exemple 50. $x \mapsto x^2$ est convexe, $y \mapsto ln(y)$ est concave.

Proposition 51. Une fonction $f: I \to \mathbb{R}$ (I intervalle de \mathbb{R}) est convexe \iff $\forall x_0 \in I, \begin{cases} g_{x_0} : I \to \mathbb{R} \\ x \mapsto \frac{f(x) - f(x_0)}{x - x_0} \end{cases}$ est croissante.

Corollaire 52. Soit une fonction $f: I \to \mathbb{R}$ (I intervalle de \mathbb{R}) convexe

- f possède en tout point de l'intérieur de I une dérivée à gauche et à droite.
- f est continue à l'intérieur de I
- Les applications f'_d et f'_q sont croissantes sur l'intérieur de I, et $f'_q(x) \leq f'_d(x)$.

Théorème 53. Soit une fonction $f: I \to \mathbb{R}$ (I intervalle de \mathbb{R}) dérivable sur I. Alors:

f est convexe \iff f' est croissante sur $I \iff$

Proposition 54. Soit une fonction $f: I \to \mathbb{R}$ (I intervalle de \mathbb{R}) convexe. Alors $\forall (x_1,...,x_n) \in I^n$, $\forall (\alpha_1,...,\alpha_n) > 0$, on à $f(\frac{\alpha_1x_1+...+\alpha_nx_n}{\alpha_1+...+\alpha_n}) \le \frac{\alpha_1f(x_1)+...+\alpha_n}{\alpha_1+...+\alpha_n}$.

Corollaire 55 (Inégalité arithmético-géométrique). Soient $(x_1,...,x_n)$ des nombres réels positifs. Alors $(x_1...x_n)^{\frac{1}{n}} \leq \frac{x_1+...+x_n}{n}$

Application 56. [Inégalité de Hölder] Soient deux nombres positifs p et q tel que $\frac{1}{p} + \frac{1}{q} = 1$. Soient $(a_1, ..., a_n)$ et $(b_1, ..., b_n)$ des réels positifs. Alors : $\sum_{k=0}^n a_k b_k \leq (\sum_{k=0}^n a_k^p)^{\frac{1}{p}} (\sum_{k=0}^n b_k^q)^{\frac{1}{q}}$

Application 57 (Inégalité de Minkowski).