Développement : Espace de Bergman du disque unité

Détails/Enoncé :

L'espace de Bergman du disque unité est $B^2( \mathbb{D} ) := Hol(\mathbb{D}) \cap L^2(\mathbb{D} )$.
$(B^2(\mathbb{D} ) , \|.\|_{L^2} )$ est un espace de Hilbert.
Une base hilbertienne de cet espace est $(z \mapsto z^n.\sqrt{\frac{n+1}{\pi}})_n$.
De plus, $B^2(\mathbb{D} )$ possède un noyau de reproduction, $K_{B^2(\mathbb{D})}(z;w) := \frac{1}{\pi}.\frac{1}{(1-\overline{w}z)^2}$, qui vérifie :
- $\overline{K_{B^2(\mathbb{D})}(z;.)} \in B^2( \mathbb{D} )$ $\forall$ z $\in \mathbb{D}$
- $f(z) = \iint_{\mathbb{D}} K(z;w)f(w) dxdy$, $\forall $f$ \in B^2(\mathbb{D})$ $\forall$ z $\in \mathbb{D}$.

Autres années :

Versions :

  • Auteur :
  • Remarque :
    Recasages : 201,245,243,234,213,208,205

    *LE* développement d'analyse tendance de l'année 2023. Belle application de la projection sur un convexe fermé dans un Hilbert (critère de densité utilisé pour la famille totale + théorème de rpz de Riesz)

    Lien direct vers le fichier : https://delbep.notion.site/406816fc93b74e5db75ff232d12fdab7?v=d11624e4c7aa41bdb625b5e3a57af4e6

    Vous trouverez toutes mes ressources pour l'agrégation à cette adresse : https://www.notion.so/delbep/Agr-gation-c834c3492ca94b68b157e683e615536b?pvs=4
  • Référence :
  • Fichier :