Leçon 235 : Problèmes d’interversion de limites et d’intégrales.

(2020) 235
(2022) 235

Dernier rapport du Jury :

(2019 : 235 - Problèmes d’interversion de limites et d’intégrales.) Cette leçon s’intéresse aux problèmes d’interversion limite-limite, limite-intégrale et intégrale-intégrale. Il ne s’agit pas de refaire un cours d’intégration. On pourra toutefois mettre en évidence le rôle important joué par des théorèmes cruciaux de ce cours. À un niveau élémentaire, on peut insister sur le rôle de la convergence uniforme (et donc, dans le cas de séries de fonctions bornées,de la convergence normale.) Les théorèmes de convergence monotone, de convergence dominée et les théorèmes d’interversion de Fubini-Tonelli et Fubini sont des attendus de cette leçon. On choisira des exemples pertinents pour illustrer l’intérêt de chacun de ces résultats, mais on pourra aussi exhiber des contre-exemples montrant que des hypothèses trop faibles ne permettent pas en général d’effectuer l’interversion voulue. Le jury note que ces différents points posent problème à de nombreux candidats, qui sont mis en difficulté sur des exemples assez simples. Ils sont donc invités à consolider ces notions avant de s’aventurer plus loin. $\\$ Pour les candidats qui le souhaitent, on pourra parler de la transformée deFourieret/ou de la transformée de Laplace avec des exemples et des applications.

(2017 : 235 - Problèmes d'interversion de limites et d'intégrales.) Cette leçon s’intéresse aux problèmes d’interversion limite-limite, limite-intégrale et intégrale-intégrale. Il ne s’agit pas de refaire un cours d’intégration. On pourra toutefois mettre en évidence le rôle important joué par des théorèmes cruciaux de ce cours. À un niveau éléméntaire, on peut insister sur le rôle de la convergence niforme, ou de la convergence normale (dans le cas de séries de fonctions). Les théorèmes de convergence dominée, de convergence monotone et le théorème de Fubini (et Fubini-Tonelli) ont leur place dans cette leçon. On choisira des exemples pertinents pour illustrer l’intérêt de chacun de ces réultats, mais on pourra aussi exhiber des contre-exemples montrant que des hypothèses trop faibles ne permettent pas en général d’effectuer l’interversion tant désirée. Pour les candidats qui le souhaitent, on pourra parler de la transformée de Fourier et/ou de la transformée de Laplace.
(2016 : 235 - Problèmes d'interversion de limites et d'intégrales.) Cette leçon s’intéresse aux problèmes d’interversion limite-limite, limite-intégrale et intégrale-intégrale. Il ne s’agit pas de refaire un cours d’intégration. On pourra toutefois mettre en évidence le rôle important joué par des théorèmes cruciaux de ce cours. À un niveau élémentaire, on peut insister sur le rôle de la convergence uniforme, ou de la convergence normale (dans le cas de séries de fonctions). À un niveau plus avancé, les théorèmes de convergence dominée, de convergence monotone et le théorème de Fubini (et Fubini-Tonelli) ont leur place dans cette leçon. On choisira des exemples pertinents pour illustrer l’intérêt de chacun de ces réultats, mais on pourra aussi exhiber des contre-exemples montrant que des hypothèses trop faibles ne permettent pas en général d’effectuer l’interversion tant désirée. Pour les candidats qui le souhaitent, on pourra parler de la transformée de Fourier et/ou de la transformée de Laplace.

Plans/remarques :

2020 : Leçon 235 - Problèmes d’interversion de limites et d’intégrales.

  • Auteur :
  • Remarque :
    Toutes les références sont à la fin du plan.

    Mes excuses pour l'écriture, et attention aux coquilles...
  • Fichier :

2019 : Leçon 235 - Problèmes d’interversion de limites et d’intégrales.


2018 : Leçon 235 - Problèmes d’interversion de limites et d’intégrales.


2017 : Leçon 235 - Problèmes d'interversion de limites et d'intégrales.


Retours d'oraux :

2018 : Leçon 235 - Problèmes d’interversion de limites et d’intégrales.

  • Leçon choisie :

    235 : Problèmes d’interversion de limites et d’intégrales.

  • Autre leçon :

    245 : Fonctions holomorphes sur un ouvert de C . Exemples et applications.

  • Développement choisi : (par le jury)

    Equation de la chaleur sur un anneau

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Nombreuses questions autour des séries de Fourier (j'avais mis peu de théorème sur ma feuille et j'étais allé un peu vite sur le développement). Rien de totalement hors des clous.

    On m'a demandé ce que j'aurais ajouté comme applications en plus (j'avais dit dans ma présentation que je n'avais pas pu tous les citer car la leçon est très dense et que je n'avais pas forcément eu la place d'être exhaustive dans cette partie) : j'ai répondu que l'on pouvait parlé de prolongement de fonctions, comme la fonction Gamma ou encore montrer que les polygones orthogonaux forment une base de L^2. C'était deux autres développements que j'avais préparé.

    J'ai eu des questions sur une de mes applications (dénombrement des solutions d'une équation diophantienne) qui utilisait juste un produit de Cauchy, notamment sur sa pertinence dans le plan.

    Pour finir, le jury qui avait l'air de beaucoup aimé les séries de Fourier m'a demandé de montré l'unicité de la solution de l'équation de la chaleur en utilisant la fonction énergie.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Deux jurys fort sympathique et un troisième qui m'a posé l'essentiel des questions autour des séries de Fourier pas forcément toujours en douceur.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Les plans sont ramassée 10 minutes avant la fin, soit presque 20 minutes avant le passage devant le jury.

  • Note obtenue :

    9.25


Références utilisées dans les versions de cette leçon :

Suites et séries numériques, suites et séries de fonctions, El Amrani (utilisée dans 85 versions au total)
Analyse , Gourdon (utilisée dans 554 versions au total)
Analyse. Théorie de l'intégration, Briane, Pagès (utilisée dans 104 versions au total)
Analyse réelle et complexe , Rudin (utilisée dans 70 versions au total)
Calcul intégral, Candelpergher (utilisée dans 33 versions au total)
Analyse complexe pour la Licence 3, Tauvel (utilisée dans 101 versions au total)