$\forall k\in\mathbb{N}^*,\quad \zeta(2k)=(-1)^{k-1}\dfrac{(2\pi)^{2k}}{2.(2k)!}b_{2k}\in\pi^{2k}\mathbb{Q} \quad$ (où $b_n$ est le n$^{ème}$ nombre de Bernoulli).
Rekasator alternatif (test exhaustif cherchant la plus petite quantité sans prendre en compte la qualité) + tableur pour le suivi des leçons: https://sites.google.com/view/ospoam/accueil
Un des développements les moins funs que je propose, mais il en faut forcément des comme ça. Attention aux calculs, c'est un développement propice aux typos (en particulier dans mon document !).
Je le prends pour les leçons 230, 244 et 246.
On trouvera la preuve aux alentours de la page 308 de la référence.
Encore un développement que j'ai du abrégé car je ne rentrais pas dans les 15 minutes. Je présentais donc juste le calcul du DSE de la fonction, et gardais l'application à la fonction de zeta pour les questions.
Je l'ai uniquement placée dans la leçon sur les série de Fourier mais je pense que c'est un bon développement et qu'il mérite d'être présent dans plus de leçon.
Il se peut qu'il reste des coquilles, n'hésitez pas à me contacter au besoin.
Références utilisées dans les versions de ce développement :
Oraux X-ENS Analyse 2
, Francinou, Gianella, Nicolas (utilisée dans 59 versions au total)
Connexion
Inscription
Confirmer la suppresion
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.