Développement : Description géométrique des normes

Détails/Enoncé :

[On traite le cas de la dimension finie, même si le résultat est vrai aussi en dimension infinie]
On montre le théorème suivant:
Soit $A$ une partie non vide de $R^n$, alors il y a équivalence entre:
- $A$ est la boule unité fermée d'une certaine norme sur $R^n$
- $A$ est convexe, équilibrée, compacte et contenant 0 comme point intérieur.

Une application est la construction d'une norme $||.||$ sur $R^2$ telle que les seules isométries de $(R^2, ||.||)$ sont $id$ et $-id$.

Référence: Zuily-Queffelec, p 244 pour l'édition de 2013. Voir aussi Rouvière (Petit Guide du calcul diff... ) p 20

Références utilisées dans les versions de ce développement :

Analyse pour l'agrégation, Queffelec, Zuily (utilisée dans 162 versions au total)
Petit guide de calcul différentiel , Rouvière (utilisée dans 134 versions au total)