Soit $u \in L(E)$ et $E$ un espace vectoriel de dimension finie. La réduction de Frobenius consiste à montrer qu'il existe des sous-espaces $F_i$ tels que $E = \bigoplus_{i=1}^r F_i$, les $F_i$ soient stables par $u$, $u_{F_i}$ soit cyclique et $P_i$ soit le polynôme minimal de $u_{F_i}$ de sorte que $P_r | \cdots | P_1 = \mu_u$.