Leçon 151 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

(2014) 151
(2016) 151

Dernier rapport du Jury :

(2015 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est important de bien connaître les théorèmes fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Ces théorèmes semblent simples car ils ont été très souvent pratiqués, mais leur preuve demande un soin particulier, ce qui rend la leçon plus difficile qu'on ne le croit. Des questions élémentaires comme "un sous-espace vectoriel d'un espace vectoriel de dimension finie, est-il aussi de dimension finie ? " peuvent dérouter un candidat. Les diverses caractérisations du rang trouvent bien leur place ainsi que, pour les candidats plus chevronnés, l'utilisation du degré d'une extension dans la théorie des corps.

(2014 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) C'est une leçon qui, contrairement aux apparences, est devenue difficile pour les candidats. Nombre d'entre eux n'ont pas été capables de donner des réponses satisfaisantes à des questions élémentaires comme : un sous-espace vectoriel d'un espace vectoriel de dimension finie, est-il aussi de dimension finie ? Il faut bien connaître les théorèmes fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Les diverses caractérisations du rang doivent être connues.

Plans/remarques :

2015 : Leçon 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


Retours d'oraux :

Pas de retours pour cette leçon.