Développement : Réduction de Jordan d'un endomorphisme nilpotent

Détails/Enoncé :

Soit $u \in L(E)$ un endomorphisme nilpotent. Il existe une base dans laquelle $u$ s'écrit

$$ \begin{pmatrix}
0 & v_1 & 0 & & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & 0 \\
& & & \ddots & v_1\\
& & & & 0
\end{pmatrix}$$

Autres années :

Versions :

  • Auteur :
  • Remarque :
    D'après moi pour les leçons : 151 et 157.

    Attention aux notation du livre de G. Berhuy, ce qu'il appelle une cellule de Jordan est généralement appelé bloc de Jordan (il fait une distinction entre les deux).

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Référence :
  • Fichier :