Leçon 151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

(2019) 151
(2021) 151

Dernier rapport du Jury :

(2019 : 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est indispensable de présenter les résultats fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Ces théorèmes semblent simples car ils ont été très souvent pratiqués, mais leur preuve demande un soin particulier. Il est important de savoir justifier pourquoi un sous-espace vectoriel d’un espace vectoriel de dimension finie est aussi de dimension finie. $\\$ On peut montrer, sur des exemples, comment la dimension finie intervient dans la démonstration de certains résultats (récurrence sur la dimension, égalité de sous-espaces par inclusion et égalité des dimensions, isomorphisme par injectivité et dimension, etc.). À cette occasion, on pourra signaler des résultats qui ne subsistent pas en dimension infinie. Le pivot de Gauss ainsi que les diverses notions et caractérisations du rang trouvent leur place dans cette leçon. Les applications sont nombreuses : existence de polynômes annulateurs, dimension de l’espace des formes n-linéaires alternées en dimension n, isomorphisme avec le dual dans le cadre euclidien et théorème de Riesz, espaces de solutions d’équations différentielles ordinaires, caractérisation des endomorphismes diagonalisables, décomposition d’isométries en produits de réflexions, dimensions des représentations irréductibles d’un groupe fini, théorie des corps finis, etc. $\\$ Les caractérisations du rang peuvent aussi être utilisées pour démontrer l’invariance du rang par extension de corps, ou pour établir des propriétés topologiques (sur $\textbf{R}$ ou $\textbf{C}$). S’ils le désirent, les candidats peuvent déterminer des degrés d’extensions dans la théorie des corps ou s’intéresser aux nombres algébriques. Il est également possible d’explorer des applications en analyse comme les extrémas liés. Dans un autre registre, il est pertinent d’évoquer la méthode des moindres carrés dans cette leçon, par exemple en faisant ressortir la condition de rang maximal pour garantir l’unicité de la solution et s’orienter vers les techniques de décomposition en valeurs singulières pour le cas général. On peut alors naturellement analyser l’approximation d’une matrice par une suite de matrices de faible rang.

(2017 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est important de présenter les résultats fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Ces théorèmes semblent simples car ils ont été très souvent pratiqués, mais leur preuve demande un soin particulier. Il est important de savoir justifier pourquoi un sous-espace vectoriel d’un espace vectoriel de dimension finie est aussi de dimension finie. Le pivot de Gauss ainsi que les diverses notions et caractérisations du rang trouvent leur place dans cette leçon. Les applications sont nombreuses, on peut par exemple évoquer l’existence de polynômes annulateurs ou alors décomposer les isométries en produits de réflexions. S’ils le désirent, les candidats peuvent déterminer des degrés d’extensions dans la théorie des corps ou s’intéresser aux nombres algébriques. Dans un autre registre, il est pertinent d’évoquer la méthode des moindre carrés dans cette leçon, par exemple en faisant ressortir la condition de rang maximal pour garantir l’unicité de la solution et s’orienter vers les techniques de décomposition en valeurs singulières pour le cas général. On peut alors naturellement explorer l’approximation d’une matrice par une suite de matrices de faible rang.
(2016 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est important de présenter les résultats fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Ces théorèmes semblent simples car ils ont été très souvent pratiqués, mais leur preuve demande un soin particulier. Il est important de savoir justifier pourquoi un sous-espace vectoriel d’un espace vectoriel de dimension finie est aussi de dimension finie. Les diverses notions et caractérisations du rang trouvent leur place dans cette leçon. Les applications sont nombreuses, on peut par exemple évoquer l’existence de polynômes annulateurs ou alors décomposer les isométries en produits de réflexions. S’ils le désirent, les candidats peuvent déterminer des degrés d’extensions dans la théorie des corps ou s’intéresser aux nombres algébriques.
(2015 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est important de bien connaître les théorèmes fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Ces théorèmes semblent simples car ils ont été très souvent pratiqués, mais leur preuve demande un soin particulier, ce qui rend la leçon plus difficile qu'on ne le croit. Des questions élémentaires comme "un sous-espace vectoriel d'un espace vectoriel de dimension finie, est-il aussi de dimension finie ? " peuvent dérouter un candidat. Les diverses caractérisations du rang trouvent bien leur place ainsi que, pour les candidats plus chevronnés, l'utilisation du degré d'une extension dans la théorie des corps.
(2014 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) C'est une leçon qui, contrairement aux apparences, est devenue difficile pour les candidats. Nombre d'entre eux n'ont pas été capables de donner des réponses satisfaisantes à des questions élémentaires comme : un sous-espace vectoriel d'un espace vectoriel de dimension finie, est-il aussi de dimension finie ? Il faut bien connaître les théorèmes fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Les diverses caractérisations du rang doivent être connues.

Développements :

Plans/remarques :

2020 : Leçon 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Auteur :
  • Remarque :
    Toutes les références sont à la fin du plan.

    Mes excuses pour l'écriture, et attention aux coquilles...
  • Fichier :

2019 : Leçon 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


2018 : Leçon 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


2017 : Leçon 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


2016 : Leçon 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


2015 : Leçon 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


Retours d'oraux :

Pas de retours pour cette leçon.

Références utilisées dans les versions de cette leçon :

Algèbre , Gourdon (utilisée dans 306 versions au total)
Analyse , Gourdon (utilisée dans 549 versions au total)
Algèbre linéaire , Grifone (utilisée dans 95 versions au total)
Cours d'algèbre , Perrin (utilisée dans 393 versions au total)
Extension de Corps - Théorie de Galois, Josette Calais (utilisée dans 6 versions au total)
Théorie de Galois, Gozard (utilisée dans 32 versions au total)
Théorie des corps , Carréga (utilisée dans 22 versions au total)
Oraux X-ENS Algèbre 2 , Francinou, Gianella, Nicolas (utilisée dans 68 versions au total)
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi (utilisée dans 443 versions au total)
Algèbre linéaire réduction des endomorphismes, R. Mansuy, R. Mneimné (utilisée dans 50 versions au total)
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas (utilisée dans 139 versions au total)