Coquille non négligeable dans la version d'Aurélie Bigot ! (Désolé Aurélie, je n'ai rien contre vous, vous l'avez pourtant bien écrit dans votre leçon !)
- Le théorème est faux: sachant que tout élément de $K$ est algébrique sur $K$, on a $K \subseteq A$, donc si $K$ n'est pas dénombrable, $A$ ne pourra jamais l'être. (L'erreur vient, dans la démonstration de (ii), du fait que $A = \bigcup\limits_{k \geq 0} \bigcup\limits_{n \geq 1} \bigcup\limits_{P \in E_{k,n}} Z(P)$, et qu'en n'écrivant pas cette troisième union, on oublie le fait que $E_{k,n}$ n'est pas dénombrable si $K$ ne l'est pas.)
- Bien évidemment, il ne faut pas oublier la condition $P \neq 0$ dans la définition de $A$
C'est bien trop court pour faire un développement: en prenant vraiment son temps, on ne peut pas tenir plus de 10 min. Je recommande d'ajouter ceci à la double caractérisation de l'algébricité (avec $K[\alpha]$ et $K(\alpha)$).
Côté recasages, mettre ce développement en dehors de la 125 me paraît quelque peu abusif.
On trouvera cet exercice p94 de la 3e version du Gourdon algèbre, et ma suggestion d'ajout se trouvera en p66 du Perrin
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.