Leçon 154 : Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.

(2020) 154
(2022) 154

Dernier rapport du Jury :

(2019 : 154 - Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.) Dans cette leçon, il faut présenter des propriétés de l’ensemble des sous-espaces stables par un endomorphisme. Des études détaillées sont les bienvenues, par exemple dans le cas d’une matrice diagonalisable ou dans le cas d’une matrice nilpotente d’indice maximum. $\\$ L’étude des endomorphismes cycliques et des endomorphismes semi-simples trouvent tout à fait leur place dans cette leçon. Dans le cas des corps $\textbf{R}$ ou $\textbf{C}$, on pourra, si on le souhaite, caractériser ces derniers par la fermeture de leur orbite. $\\$ La réduction des endomorphismes normaux et l’exemple de résolutions d’équations matricielles peuvent être présentés en applications. $\\$ La décomposition de Frobenius constitue également une application intéressante de cette leçon. Il ne faut pas oublier d’examiner le cas des sous-espaces stables par des familles d’endomorphismes. $\\$ Ceci peut déboucher par exemple sur des endomorphismes commutant entre eux ou sur la théorie des représentations.

(2017 : 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.) Dans cette leçon, il faut présenter des propriétés de l’ensemble des sous-espaces stables par un endomorphisme. Des études détaillées sont les bienvenues, par exemple dans le cas d’une matrice diagonalisable ou dans le cas d’une matrice nilpotente d’indice maximum. La décomposition de Frobenius trouve tout à fait sa place dans cette leçon. Il ne faut pas oublier d’examiner le cas des sous-espaces stables par des familles d’endomorphismes. Ceci peut déboucher par exemple sur des endomorphismes commutants entre eux ou sur la théorie des représentations.
(2016 : 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.) Dans cette leçon, il faut présenter des propriétés de l’ensemble des sous-espaces stables par un endomorphisme. Des études détaillées sont les bienvenues, par exemple le cas d’une matrice diagonalisable ou le cas d’une matrice nilpotente d’indice maximum. La décomposition de Frobenius trouve tout à fait sa place dans cette leçon. Il ne faut pas oublier d’examiner le cas des sous-espaces stables par des familles d’endomorphismes. Ceci peut déboucher par exemple sur des endomorphismes commutant entre eux ou sur la théorie des représentations.
(2015 : 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.) Les candidats doivent s'être interrogés sur les propriétés de l'ensemble des sous-espaces stables par un endomorphisme. Des études détaillées de cas sont les bienvenues, par exemple le cas d'une matrice diagonalisable, le cas d'une matrice nilpotente d'indice maximum. La décomposition de Frobenius trouve tout à fait sa place dans la leçon. Notons qu'il a été ajouté à l'intitulé la notion de familles d'endomorphismes. Ceci peut déboucher par exemple sur des endomorphismes commutant entre eux ou sur la théorie des représentations.
(2014 : 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.) Les candidats doivent s'être interrogés sur les propriétés de l'ensemble des sous-espaces stables par un endomorphisme. Des études détaillées de cas sont les bienvenues. La décomposition de Frobenius trouve tout à fait sa place dans la leçon. Notons qu'il a été ajouté la notion de familles d'endomorphismes. Ceci peut déboucher par exemple sur des endomorphismes commutant entre eux ou sur la théorie des représentations.

Développements :

Plans/remarques :

2020 : Leçon 154 - Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.

  • Auteur :
  • Remarque :
    Toutes les références sont à la fin du plan.

    Mes excuses pour l'écriture, et attention aux coquilles...
  • Fichier :

2019 : Leçon 154 - Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.


2018 : Leçon 154 - Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.


2017 : Leçon 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.


2016 : Leçon 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.


2015 : Leçon 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.


Retours d'oraux :

2018 : Leçon 154 - Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.

  • Leçon choisie :

    154 : Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.

  • Autre leçon :

    182 : Applications des nombres complexes à la géométrie.

  • Développement choisi : (par le jury)

    Invariants de similitude (réduction de Frobenius)

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    À la fin du développement beaucoup de question sur celui-ci, le jury semblait ne pas comprendre certains points. Ensuite on m'a demandé de déterminer les sous-espaces stables par l'endomorphisme représenté dans la base canonique de $K^4$ par la matrice
    \[\left(
    \begin{array}{cccc}
    1 & 1 & 0 & 0 \\
    0 & 1 & 0 & 0 \\
    0 & 0 & 2 & 0 \\
    0 & 0 & 0 & 2
    \end{array}
    \right).\]
    Ensuite un exercice en rapport avec le développement : on pose $F_x=\ker (\pi_{f,x}(f))$, montrer que $E=\cup_{x\in E} F_x$, que peut-on dire de $\pi_{f,x}$ et $\pi_f$ ? ($\pi_{f,x}\mid \pi_f$), que dire des diviseurs de $\pi_f$ : il y en a un nombre fini à coefficient multiplicatif près. Quelle condition est suffisante pour que $\pi_{f,x}= \pi_f$ ?

    Enfin sur le plan : preuve du critère de diagonalisation sur les corps finis, préciser l'énoncé de la décomposition de Dunford de l'exponentielle de $f$ ($k=\mathbb{R}$ ou $\mathbb{C}$, il faut que $f$ admette une décomposition de Dunford), puis de montrer l'équivalence $f$ diagonalisable ssi $exp(f)$ l'est. En toute fin on m'a demandé la preuve du théorème de Maschke, et pourquoi quand on moyennise le produit scalaire cela reste un produit scalaire.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était plutôt neutre, l'un avait l'air agacé parfois.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'ai été surpris des questions sur mon développement qui était classique et pas compliqué.

  • Note obtenue :

    17.25

  • Leçon choisie :

    154 : Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.

  • Autre leçon :

    190 : Méthodes combinatoires, problèmes de dénombrement.

  • Développement choisi : (par le jury)

    Lemme de Maschke

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Il n’y a eu que très peu de questions sur les représentations (que des bases, définitions, premières propriétés, exemples). La majeure partie des questions était sur la décomposition de dunford : démonstration de l’existence, détermination de la décomposition pour une matrice 2x2 triangulaire supérieure avec un paramètre alpha, complexité de l’algorithme.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était très agréable.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    13.5


Références utilisées dans les versions de cette leçon :

Objectif Agrégation, Beck, Malick, Peyré (utilisée dans 214 versions au total)
Algèbre , Gourdon (utilisée dans 237 versions au total)
Cours d'algèbre , Perrin (utilisée dans 285 versions au total)
Algèbre linéaire réduction des endomorphismes, R. Mansuy, R. Mneimné (utilisée dans 39 versions au total)
Invitation aux formes quadratiques , Seguin (utilisée dans 5 versions au total)
Elements d'analyse et d'algèbre , Colmez (utilisée dans 17 versions au total)
Histoires hédonistes de groupes et géométries, Tome 1, Caldero, Germoni (utilisée dans 92 versions au total)